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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1323

NUMERICAL SOLUTION OF TWO-DIM_NSIONAL POISSON

EQUATION: THEORYAND APPLICATION TO

ELECTROSTATIC-ION-ENGINE ANALYSIS

By Vladimir Hamza and Edward A. Richley

SUMMARY

A numerical solution of the two-dimensional Poisson equation for

mixed boundary conditions is presented, and the theory and application

to an electrostatic-ion-engine analysis are discussed.

The Poisson equation is solved _by a method of successive approxima-

tions. The first approximation to the space-charge density, which is

obtained from the Laplacian solution_ gives rise to an over-space-charge-

limited case. The use of a suppression factor to remove this restriction

is discussed, and a method of estimating the value of this factor is

suggested.

A method of solution is developed in which the differential equation

is replaced by finite difference equations_ and the properties of the re-

sulting matrix are studied. The Cyclic Chebyshev Semi-lterative Method is

described, and an estimate of an optimum overrelaxation factor is given.

Detailed calculations of the ion trajectories together with the

space-charge-density function are presented. Also included is the pro-

gram for an IBM 70_ computer that was used for solution of a numerical

example of an ion rocket engine being tested at the Lewis Research Center.

INTRODUCTION

Of the many methods of electric propulsion currently being investi-

gated, the electrostatic ion rocket engine is one type that is receiving

considerable attention. Although the principle of operation of the ion

engine is not complex (see ref. I), many factors that affect the perform-

ance of the engine require, and are receiving, a great deal of study.
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Two important engine-performance requirements are long operational
life and high efficiency. Directly related to these performance param-
eters is the study of ion optics. As discussed in reference 2, near-
perfect ion optics to minimize accelerator-electrode sputtering is a de-
sign feature necessary for long operational life as well as improved en-
gine efficiency. In addition, improvement in engine efficiency may be
gained by the use of ion accelerators operating with current densities
at or near the space-charge limit. In this respect, optimization of en-
gine design requires the solution of the space-charge-flow problem, or
mathematically, the solution of the Poisson equation and the equation of
motion.

While a few analytical solutions of the Poisson equation exist,
they are generally confined to specific geometric configurations (e.g.,
ref. 2), and the solutions are limited in scope and application. In the
ion engine, ions leave through an exhaust aperture, and hence complica-
tions arise whenthe known analytical solutions are applied to ion-engine
analysis. Becausepotential differences exist in the engine_ the aper-
ture can give rise to a distortion of the potential field which, in turn,
serves to complicate the boundary conditions of the space-charge-flow
problem. Thus, a need exists for a generalized method of solution of
the Poisson equation that can be applied to ion-engine analysis and de-
sign.

The numerical method of solution of the two-dimensional Poisson
equation presented and developed herein is generally applicable to any
type of physical situation that can be described by this equation. For
the convenience of the reader and to demonstrate the application as an
ion-engine diagnostic tool, the method of solution is developed in ex-
ample form, namely_ as the analysis of the steady-state space-charge-
limited flow of an ion beamin an ion engine presently being tested at
the Lewis Research Center. The solution was obtained with the aid of an
IBM 704 computer. The computer program is given in appendix C by
Carl D. Bogart.

The problem, outlined very simply, is solved in the following man-
ner. Boundary conditions are stipulated. Finite difference equations
are established that give rise to a matrix equation, which is solved by
the Cyclic ChebyshevSemi-lterative Method. The solution of this prob-
lem is discussed in detail. Also discussed are methods of obtaining an
optimum estimate of the spectral radius of the matrix, determination of
ion trajectories, overestimation of the space-charge density resulting
from the Lap!acian solution, and a method of obtaining rapid convergence
to the Poisson solution. Emphasis is given to optimization of the solu-
tion from both accuracy and computer-time considerations.

This work was carried out as a part of the electrostatic rocket en-
gine research program at the NASALewis Research Center.



Valuable discussions with Dr. Richard S. Varga, professor of mathe-
matics at Case Institute of Technology_ have added muchto the mathemat-
ical rigor of the numerical analysis and are gratefully acknowledged.

STATEMENTOFPROBLEM

The example used to demonstrate the numerical method of solution of
the two-dimensional Poisson equation is the analysis of the steady-state
space-charge-limited flow of an ion beamin an ion engine. In this sec-
tion a mathematical model is established from a physical model, and the
matrix equation to be solved is developed from the finite difference
equations.

Physical Model

Figure i is a photograph of the ion engine from which the example
is taken. This engine is knownas a closely spaced grid electrode, ion
rocket engine. The theory of engine operation and possible mission ap-
plications are discussed in detail in reference S.

A sketch of the portion of the engine that is of immediate interest
is shownin figure 2. Ions are formed on the ion emitter, which is at a
positive potential relative to ground. The accelerator electrode is
usually at a negative potential. With the assumption that an adequate
flow of propellant is available (cesium vapor in this case), the poten-
tial field created between the ion emitter and the accelerator electrode
gives rise to space-charge-limited flow of the ions. The potential dif-
ference between the ion emitter and the decelerator electrode acts to
control the ion-beam exhaust velocity. Also shownin figure 2 s_rea
section view of the interior of the engine (note the region of symmetry
and the typical ion trajectory) and a sketch of the idealized potential
distribution.

Mathematical Model

The portion of the engine considered for determination of ion tra-
jectories and for solution of the Poisson equation is taken from the re-
gion of symmetryindicated in figure 2. For simplicity, the portion of
the boundary formed by the ion emitter is taken to be flat in the mathe-
matical model; however, it may have any shape. Sketch (a) depicts the
mathematical model:
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The Poisson equatio n for the region R is in the form

-v2®(x,y)--Co 0(®,x,y) (i)

The region R has an external boundary P that satisfies the equation

_®(x,y) + _ _(x_y)_n = Yi for i = 1,2,s,4,s,_ _ _ (2)

Values of _ = I and _ = 0 correspond to Dirichlet boundary condi-

tions, while _ = 0 and _ = i correspond to Neumann boundary condi-

tions. (All symbols are defined in appendix A.)

The potential-distribution function $(x,y) and the space-charge-

density-distribution function O($,x,y) are continuous in the region R.

The space-charge-density-distribution function p($,x,y) is nonnegative

for positive ion flow and is not known a priori. It depends on the

potential-distribution function _, which must satisfy equation (i) and

the conditions of equation (Z) on the exterior boundary P of region

R.

To begin the numerical method of solution_ a discrete number of

mesh points is chosen in the region R. This overlay of mesh points is

shown in figure 5. The uniformity of mesh spacing away from the wires

is not essential but was chosen for simplicity. Finer mesh spacing

around the accelerator and decelerator wires was chosen in anticipation

of larger potential gradients in those regions. The next step consists

of replacing the differential equation (eq. (i)) by the finite differ-

ence equations.
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Finite Difference Equations Five-Point-

Formula Approximation

The Poisson equation (Cartesian coordinates) for the discrete case

-v2w(x,y)_-f(w,x,y) (3)

___Kz
I ri
i
l 0

h

I Xo,Yol
I I
I I
......... J

(b)

For each of the subregions ri of the region R surrounding the point

Xo,Y O shown in sketch (b), the numerical approximation to equation (3)

is given by the five-point formula as follows:

i , , i
wo - -$ [wI + w 2 + w 3 + w4) = -$ fo h2

Although the derivation of the five-point-formula approximation of the

finite difference equations is standard and can be found in the litera-

ture (e.g., ref. 4), for completeness it is included in this report in

appendix B.

Equations similar to equation (6) can be written for each mesh

point surrounded by subregion r i for i = i, 2, ., N. The
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truncation error of this approximation is of the order h2 that is
O(h2). The numerical approximation around the curved portions of the
external boundary F(i.e., accelerator or decelerator wire, etc.), as
shownin sketch (c),

h

(c)

can be calculated by the Mike!adse formula (ref. S) and is given as

c _ Ya + w $ Yb
fo6)

This approximation has a truncation error of O(h).

The numerical approximation at the interfaces between different

nets of mesh shown in figure 3 can be treated_ as described in refer-

ence 6, by use of a transition band between the fine net and the coarse

net as shown in sketch (d):
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Points 4 and 6 are calculated as ordinary points of the coarse net.

difference equations for points 4 and 6_ respectively_ are

i
w% - _ (wI + ws + w6 + Wll ) : _ f4h 2

The

i f6h2w6- (w2+w4+ 7 +w13)--9

The point 0 is then obtained from the points i_ 2, 4, and 6, by rota-

tion of the network through 4S°. The equation for point 0 is

/ \

i i {fl + f2 + f% + f6_h2

Wo - T (Wl + w2 + w4 + w6) : _

The appropriate difference equation can be written as just outlined_

so that each of the N mesh points of region R may be described. The

result is a set of N linear equations having N unknowns.



Matrix Equation

If the total numberof meshpoints interior to R is N_ as shown
previously, N linear equations having N unknownsare obtained. If
the ordering of the meshpoints is as shownin figure 3, the N equa-
tions can be written in matrix notation as the matrix equation

Az = k_ (s)

where _ is a column vector consisting of the discrete potentials

Wl,2,...,N, _ is a column vector consisting of the discrete space-

charge-density functions fl,2,...,N and_ when applicable_ the boundary

values YI,2,..._S" The resulting matrix A is an N by N real matrix
of the form

A =

al,l -al,2 -al,12

-a2, I a2,2 -a2,3

-a12, i

-aN,N_I

-aN-I,N

aN, N

and consists of the entries aijj_ which are the multiplying factors of

the discrete potentials. The solution of the Poisson equation (eq. (3))

now has been reduced to the numerical solution of equation (S). The

diagonal entries of the matrix A are positive, whereas the off-diagonal

entries are nonpositive. It can be proved that the real matrix A is

irreducibly diagonally dominant. (The proof and definitions are given

in ref. 7). This ensures that the inverse A -I > 0 and_ thus, that the

solution of equation (5) is unique.

Let D be a positive diagonal matrix such that DA is a matrix

with unity on its main diagonal. It can be written as

DA : I - M (6)



where I is the unit matrix and M is an N by N real matrix with
zero diagonal entries. Furthermore, M has all its elements nonnegative,
and at least one of the sumsof the absolute values in any row of M is
less than unity. By virtue of Gerschgorin's theorem (ref. 7), M is
convergent.

For mathematical convenience, the matrix M can be split into two
matrices MI and M2 such that all odd-numberentries depend on even-
numberentries and vice versa (see fig. S). In such a case the matrix
M can be expressed in the form

M : (7)

1

where M I contains all the odd-number entries and M 2 contains all the

even-number entries. The matrix M (eq. (7)) is ordered consistently,

and, according to reference 8, satisfies "Property (A)," which is re-

ferred to in reference 9 as a cyclic matrix of index 2. This property

is used in the discussion of the iterative procedure.

SOLUTION OF MATRIX EQUATION

The problem of solution of the Poisson equation lies within the

numerical solution of the matrix equation (eq. (S)). For the iterative

solution, it is convenient to reduce equation (S) to an analogous matrix

equation. This may be accomplished by premultiplying equation (S) by

the matrix D, as defined in equation (6)_ to obtain

Dis : (i - M)Z : Di (8)

With Dk

ten as

identified by the column vector _, equation (8) can be writ-

Z : MZ + ! (9)

The method of solution of the matrix equation (eq. (S)) is developed in

this section in terms of the analogous equation (eq. (9)).

Cyclic Chebyshev Semi-lterative Method

In the previous section, it is indicated that the matrix M is

convergent. It is shown in reference 7 that the rate of convergence of
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certain iterative processes is directly related to the spectral radius
of the matrix M denoted as p(M), which satisfies the relation

p(M) _-maxI_il < 1 for i __i _-<N
I s

i

where _i are the eigenvalues of the matrix M. Determination of the

most efficient method of numerical solution of equation (9) requires

examination of the cyclic property of M. It is shown in reference 9

that the use of a modified Chebyshev Semi-lterative Method is the best

choice in the cyclic case. With M in the form of equation (7), the

vectors w and _ in equation (9) can be partitioned into odd-number

_I,_i an_ even-number _2,_2 sets. Equation (9) can then be written
as

(lo)

By the Chebyshev Semi-lterative Method_ the vector components can be
written as

m+l
Wm

m+l
w 2

M m m-i m-l[
: _m+l 2w2 + gl - Wl ) + Wl

fm-l) m-i

for m >_-i

where _ is the relaxation factor_ m is the iteration number and, for

the initial guess of m = O,

i
= M_wm +

and

l Iw2 = MlW + g?

The vector component equations determine the vector sequences Mm:o

A major disadvantage in the application of the preceding equations

to machine computation is the amount of storage space required. It is
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shownin reference i0 that the proper sequencecan be iteratively deter-
mined by modifying the vector componentequations to the f_rms

2m 2m- 1 '_ 2m - 12m+l M2w2 + gl Wl ] + WlWl = _2m+l

w2m+2 <O2m+2 /,, 2m+l _ _m) 2m- -- _MIX1 + g2 _w + _w2

for m _ i[.(Ii)

ojfor m

where_ for m = O_

o- = Mzwz + g-i

Initiation of this iterative method requires only the guess of the single

vector component w__ and, what is more important_ the method of solution

requires the use of no more computer storage space than any other itera-

tire procedure.

This method of solution is denoted in reference i0 as the Cyclic

Chebyshev Semi-lterative Method and was used as reported herein for the

solution of equation (9). The rapid rate of convergence obtained by

this method is compared with those of other iterative methods (e.g._

Successive Overrelaxation Method) in references i0 and ii.

The relaxation factor _ in equation (ii) is given in the form of

the Chebyshev polynomials as

2Ci(p_)

for i _ i

_i+l = (P_7)P(M)Ci+ l

coi = i

For actual computation (ref. 9) it is more convenient to express _ as

i

i [p2 i] f°r i ->-Z
_oi+I

i - 7

ah_ =i

9,
CO2 =

2 - p2(M)

(12)
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Spectral Radius of Matrix M

It is necessary to choose the relaxation factor w of equation (1R)
with great care in order to achieve an optimum rate of convergence of
equation (ii). It is evident from equation (12) that w is a function
of the ope_al radius D(M) The effect of estimated values of the
spectral radius o(M) on the rate of convergence of a matrix M for a
test region is shownin figure 4. This effect is well knownfor other
itcrative methods (e.g., Successive Overrelaxation Method), as indicated
in reference _5.

Determination of the upper and lower bounds on the spectral radius

of the N by N real, nonnegative, iteration matrix M of equation (ii)

carl be obtained by the "mimmax" method (ref. 7), which for the ith iter-

ation is related to the following inequality:

rain [ (M-w)i] _ p(M) S max I(M--w)il (iS)

i t zi ] i lwi I

The result of the calculation of p(M) by this method is compared

in the following table:

Estimated

spectral radius,

0.985000
.988000

.988500

.988750

.988910

Number of

iterations

109

105

80

54

54

Relaxation factor

in test region,
lim

m_

1.705678

1.752421

1.757286

1.759770

1.741377
a.9890758

.990000

.991000

.992000

.995000

.994000

.995000

54

56

59

65

67

72

81

i. 7430389

i. 7527%6

i. 763883

i. 77582%

i. 788726

i.802808

i. 818389

aCalculated by formula given in eq. (iS).

All values except the one calculated from equation (15) were obtained

from figure 4. It is apparent from the table that the number of itera-

tions required for convergence is a minimum at or near the value of

p(M) determined from equation (13). The upper and lower bounds on the
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spectral radius of the matrix M, as well as an estimate of the optimum
to be used in equation (ii), were obtained by the use of equation (13).

Solution of the matrix equation (eq. (S)) by the method of equa-
tion (ii) also requires a knowledge of the space-charge-density-
distribution function f, that is, the right-hand side of equation (3).
The function f is contained within the column vectors _i and _2
of equation (ii).

SPACE-CHARGE-DENSITY-DISTRIBUTIONFUNCTION

As previously mentioned, the right-hand side (P_S) of equation (i)
is not knowna priori and depends on the distribution of the function ¢.
For the discrete case (eq. (3)) the potential distribution is defined by
w and the RHSby f. A simultaneous solution for f and w is pos-
sible by a method of successive approximation.

The solution is initiated by setting the RHSof equation (3) equal
to zero by assuming no space charge. The solution of the Laplacian po-
tential distribution is obtained from equation (ii). The space-charge
free potential distribution of the Laplacian equation is then used to
computean approximate first-order space-charge-density-distribution
function f.

The function f(w,x,y) of equation (3) is also given by the rela-
tion

1 j(x,y)
f<w,x,y)=

where j(x,y) is the current-density-distribution function and v(x,y)

the velocity function. The initial values of j(x,y) and v(x,y) can

be calculated from the Laplacian potential distribution.

The following method is used to obtain j(x,y). In general, the

ion emitter current density may not be constant over the entire emitter

surface if the potential gradient near the emitter surface is not uni-

form; however, the emitter surface can be divided into a large number of

area segments AE (of unit width in the z-direction) so that the current

density in any one segment may be assumed constant. The ion trajectories

that constitute the boundaries for each segment can then be calculated.

These ion trajectories may be visualized as boundaries of current tubes

that carry the total current emitted from an area segment of the ion

emitter. Each area segment AE of the emitter and the corresponding

area A(y_z) of the equipotential surface associated with the first mesh
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column are approximated as parallel planes, and the space-charge-limited
c_rent density is calculated from the Child-Langmuir formula (ref. 12):

AwS/2
JE = _ Co _x 2

This space-charge-limited current density at the emitter multiplied by

the area segment of the emitter gives the total current carried by a

tube, which remains constant for a particular tube. Laminar flow is as-

sumed for the initial trajectory calculation; however, the possibility

of c<_rent tubes overlapping one another at downstream stations is con-

sidered in the space-charge-density calculation.

The current density at a given mesh point may be calculated as the

summation of the currents carried by tubes passing through the subregion

r i of the given mesh point, divided by the cross-sectional area of the

subregion A(y;z)j where z is taken as unity and y = h. The formula

for calculation of the current density at any mesh point_ based on the

law of conservation of charge, can be written as

n n

k:l k:l (lS)
Ji -- A(y,z) : h

Values of v(x,y) are readily obtainable from conservation of

energy considerations.

The initial values of the space-charge-density-distribution func-

tion f obtained from equation (14) are then iterated to obtain the

final solution of equation (3).

Ion Trajectories

The procedure used to obtain the ion trajectory is a pointwise de-

termination of the position of the trajectory throughout the region R.

This calculation is begun by assuming the ion velocity to be zero at the

ion emitter. This assumption neglects any thermal velocity the ions may

possess. The velocity at any other point in the region R can then be

obtained from conservation of energy considerations; for example, the

trajectory shown in sketch (e) and given by the equation

2 m (n + i)- v_(n =-q[wR(n + i)- wL(n)] :_ q AWR_ L (16)
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where vR(n + !) is the velocity at station n + i and vL(n ) is the
velocity at station n.

i

3

S

) 4/_ion trajectory x

2

_6

n n+l

(e)

Velocity components at any point at station n are known, as is the

initial position L; thus

Ay L -- 3L

An initial guess of the position R at station n + i

by calculation of the tangent to the trajectory at the point

as

can be made

L, given

_v_ =_yL +_h
Vx_n}

The positions L_ L', R, and R' are established by this first approxi-

mation. It is obvious that the position R at station n + ! calcu-

lated by this equation could be considerably in error. Further refine-

ment in establishing the true position of R is made possible by suc-

cessive approximations employing the following procedure.
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An improved value of dYR will be obtained from the relation

aT_R+l = _T, + mY_+l = ayT,+ Vy(n)atm+l + T1=m^_m+l_y_)2 for m _ 0

(17

where the increment of time At is given by

z_tm+l fkx

v X

ZXx

and

_+1(n + I) : (n) - _ _÷
m (is)

The average accelerations (in the y-direction) in equation (17), ob-

tained from the equation of motion, are

-m+l : _ a my_m+1

ay m Ay_R+I _ Z_VL
(19)

and

-o _ m _VL +_h zh - myL
ay : -- wSm h 2h Ws + 2h wI

i i 1_ wG + %ff w

The quantities yet to be determined are the potential differences

Axw in equation (18) and _yW in equation (19). The potential at the

point L can be approximated as

h - Sy L f_y L

_% - h w5 + _ w5
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whereas the potentials at the meshpoints are those values obtained from
the Laplacian solution of equation (ii). In a similar manner the poten-
tial at the point R' can be approximated as

h - hy L ZLvL

wR' - h w4 + _ w6

Thus, an initial guess of the potential difference _xw is given by

_w ° = wE, - wE

The potential differences in the x- and y-directions are more nearly ap-

proximated by the following relations

_ 1i,+O- +
where

and

_+i : w4 + w6

m+l
wL , p _ +i) {/_ +l_

The convergence of this process is quite rapid and four approximations

were found sufficient to obtain accurate values for f4yR and the compo-

nents of the velocity at the station n + i.

From examination of tl_e mathematical model_ it should be recognized

that the ion trajectories may: (i) pass directly through the region of

interest, (2) strike one of the wires, (3) strike a boundary of sy_etry5

or (4) overlap_ or cross one another. The last three possibilities re-

quire special consideration.

In the event that an ion trajectory intersects a wire_ the trajec-

tory is terminated and a new bounding trajectory just grazing the wire

is determined and is used for the calculation of the current densities

beyond that point.



18

A trajectory that crosses a boundary of symmetryis reflected back
_nto the region R by reversal of the sign of the velocity in the
y-direction. These reflected tubes together with the overlapping tubes,
if any, are included in the summationof current contributions to the
current-density calculation. The reflected tubes account for ions en-
tering the region R from adjacent regions.

Right-Hand Side of Equation (3)

Fromthe discussion of equations (14) and (15) it is apparent that,
in order to obtain values of f (i.e., the RHSof eq. (3)), a summation
must be madeof the current contributions from all tubes passing through
the subregion r i. This summust then be divided by the product of the
cross-sectional area of the subregion r i (i.e., the meshspacing height)
and the average velocity. This calculation is nowpossible with the
known ion trajectories computedby the method of the previous section.

The procedure for calculating the RHSof equation (3) for the point
O, shownin sketch (f), is demonstrated.

lon trajectory
a

b

d

n

(f)
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With the fractions of the total current defined as

Jl _ A'B_-- Jab

J2 _ Jbc

CD'

J3 _ CD Jcd

the RHS of equation (3) is obtained:

= 60----_ + -- +vBC

_]ere the alphabetical line-segment and subscript notations are defined

in sketch (f).

It is of interest to analyze the RHS of equation (3) for the first

column (i.e., mesh points 12 to 22 in fig. 3). It seems reasonable to

assume that the trajectories very close to the emitter may follow a

straight line. The RHS of equation (3) for the first column can then

be written as

i JE
f _ -- -- (2o)

eo v

where JE is obtained from the Child-Langmuir formula

_3/2
JE = _ Co V7 h 2

From total energy considerations

_ _ _V = V x = _XW

If the potential along the first column is assumed almost constant

(trajectories are straight lines)_

_w = Z_W
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and equation (20) becomes

f - s h2 (21)

Substitution of equation (81) into equation (4), written, for example,

for mesh point 17 (see fig. 3), gives

i Z_xw
w17 - _ (Wl8 + w2s + Wl6 + YI) = T

Thus, when the potential distribution from the solution of the Laplacian

equation is known, a quick check of the RHS as a first approximation of

the Poisson equation at the first column can be made by division of the

potential difference between the emitter and the mesh point of the first

colurml by 9.

An initial value of the RHS of equation (3) from the Laplacian po-

tential distribution having been obtained, the numerical solution of the

Poisson equation in the form of equation (ii) can now be accomplished.

NUMERICAL SOLUTION OF TW0-DIMENSIONAL P01SSON EQUATION

As previously mentioned, the right-hand side of the Poisson equa-

tion (eq. (3)) is not known a priori; therefore, the Laplacian equation

is used to determine a first approximation of the potential distribution

in the region R. From this initial potential distribution, it has been

shown how the ion trajectories and the initial values of the RHS can be
obtained.

It seems quite reasonable now to assume that, if the approximate RIIS

values are substituted into equation (ii) and the Cyclic Chebyshev Semi-

Iterative Method is used to solve the equation, a better approximation

of the potential distribution of the Foisson equation will result. Be-

fore the solution can be accomplished with the assurance that the process

will always converge to the solution of the Poisson equation, it is nec-

essary to utilize several pr@cautionary checks.

Overestimation of Right-Hand Side of Equation (3)

It is reported in reference i3 that the potential distribution, ob-

tained from the solution of the Laplacian equation by resistance analog

methods, results in an overestimation of the initial values of the RHS;

that is, the initial Poisson potential distribution in the vicinity of
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the emitter will actually be higher than the emitter potential YI as
shownin sketch (g). Solution of the problem by numerical meansresulted

-H

_p
O

YI

Overestimated value

of RHS from L.aplacian

solution

_Spaee-ch&rge limit

Laplacian

solution

Distance

(g)

in a similar situation. The significance of this problem to the numeri-

cal approach is that an over-space-charge-limited case occurs, and the

iterative procedure does not converge. To prevent this, the RHS of

equation (3) was multiplied by a suppression factor (SF)_ a number less

than unity, in order to avoid overestimation. The following questions
remain to be answered:

(I) Will this method result in convergence for any SF?

(2) If so, is there an optimum SF?

(3) Does this method give the space-charge-limited solution?

The answers to these questions were sought by means of some simple tests

and are discussed in the sections that follow.

Suppression Factor

In an effort to answer the foregoing questions_ a simple rectangular

test region was established as shown in sketch (h). The exact solution
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of the Poisson equation for this region is known from the Child-Langmuir

formula for a plane diode. The method of solution discussed herein was

programmed for an IBM 704 computer. The computer flow chart of the test

procedure first used to solve the Poisson equation for the region is as

follows:

I Solve H CalculateLaplacian eq. trajectories

Stop m Count numberof cycles

m I Calculate RHS I

Is the potential of the

first mesh column

larger than the poten-

tial at the emitter?

I Suppress RHS I

Solve

Poisson eq.,
25 iterations
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Both linear and power suppression factors were tested. Sketch (i)
showsthe typical variation of the RHSvalues of the first column of the
test region with the numberof cycles. The answer to the question posed
in the flow chart is yes in cycles i, 3, and 5, and the RHSvalues were
suppressed. It is apparent from the sketch that the solution converged

I !

O

b

I

I I_
i 2

III'

v
/ \---/.jv

,_ _- IV _- -"'_.4v"_g_....._
z I I 1 I -[ 1 zxl "]

3 ¢ 5 6 7 8 9 i0

Number of cycles

(i)

up to and including the sixth cycle, but from that point on it diverged.

This happened whenever the value of the RHS went beyond the upper and

lower values indicated in earlier cycles (i.e., Ii < III < I,

II < IV < ili, etc., but, VII < VI < V).

This problem was solved when an additional check on the upper and

lower bounds determined by the previous cycles was incorporated into the

procedure. The flow chart of the modified procedure is as follows:
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With this modified procedure, convergence for any SF, in the range

0 _ SF _ i could be obtained. Thus, the answer to the first question -

will this method result in convergence for any SF - is yes.

The answer to the second question - if so, is there an optimum SF -

must be analyzed from the standpoint of accuracy and execution time. To

evaluate this problem, the test region was again used. Several runs

were conducted in which various values of SF were tested, and the re-

sults are shown in figure 5_ in which the band of dispersion in percent

deviation from the exact value and the execution time are plotted as a

function of the SF for various values of both linear and power SF's.

The execution time is about equally as good for the SF's of 0.2,

0.5, 0.4, 0.5, and 0.7 (linear or power). On the other hand, from the

error plot it is apparent that power SF's of 0.2 and 0.9 and the linear

SF of 0.4 have the least deviation from the exact solution. The power

SF of 0.9 is unsatisfactory because of long execution time_ and thus,

by process of elimination, the linear SF of 0._ and the power SF of 0.2

appear to be the SF's that are closest to optimum.

In order to establish the fact that the apparent optimum SF's indi-

cated from figure S (0.4 linear and 0.2 power) also apply for any other

given potential difference, additional tests were conducted for poten-

tial differences of 2000, 1500, i000, and 750 volts, and the results are

shown in figure 6. From the figure it can be seen that a linear SF of

0._ is_ in general, closer to the optimum SF for this configuration be-

cause it gave both lower percent deviation and lower execution time. It

would be quite improper, however, to generalize that the linear SF of

0.4 is the optimum SF for any configuration. The results of figures 5

and C do seem to indicate that a linear SF may be a better choice than

a power SF. This may be due to the fact that a power SF less than unity

suppresses the RHS values that are greater than unity and increases the

values that are less than unity.

Although an SF that is the best of these values tested has been

found by the process of elimination, it is not necessarily optimum in

the strict sense of the word, and the second question has not been com-

pletely answered. IIowever, some insight into the problem was gained

from these tests, and an interesting observation was made that may aid

in clarification.

The tabulated data from which the values of the linear SF's (fig. 6)

were obtained are shown in table I; all values shown are normalized. It

is apparent that RHS values for the 2000-, 1500-, and 750-volt cases are

in direct proportion to the RHS values of the lO00-volt case; that is,

they are in direct proportion to the applied voltage. It was also noted

in the computation of the values shown in figure 5 that Convergence of

the RHS to essentially the same values occurred irrespective of the value



of the SFused. It was deducedfrom this comparison that_ for any given
set of potential boundary conditions_ tile initial value of the RHSfrom
the Laplacian solution maybe in direct proportion to the converged RHS
values of the Poisson solution. This observation should hold true for
the first approximation to the RHSvalues obtained by the Laplacian
equation, since they are also in direct proportion to the applied volt-
age. As discussed in the section Right-Hand Side of Equation (5), the
first approximation of the RHSof the first meshcolumn from the
Laplacian solution can be obtained by division of the potential differ-
ence between the emitter and the first column by 9. The RHSvalues for
the converged Poisson solution maybe obtained by any linear SF_and the
optim_tmSF should be the ratio of these two values. The procedure can
best be explained by the following example: In the compilation of the
data of table I_ the potential distribution obtained from the Laplacian
equation for the lO00-volt case was 9SS.SS volts in the first column;
therefore, the potential difference between the emitter and the first
column is 66.67. The first approximation to the RHSvalue is then
66.67/9 or 7.41. If during the test run the RHSvalue of the first
column of the Poisson equation (in this case _3.00)_ is obtained by any
assumedSF_ then the best choice of SF for that configuration is given
by 5.00/7.41 or 0.4. This procedure is a tentative answer to the second
question.

The answer to the third question - does this method give the space-
charge-limited solution - is obvious from figures 5 and 6, in which the
error shownis the percent deviation from the exact values for the
space-charge-limited case.

The results for the test region show:

(i) The solution of the Poisson equation by this method is conver-
gent for any SF (0 < SF (i).

(2) An optimum SF was not found explicitly_ but a tentative method
of estimation has been demonstrated.

(3) The space-charge-limited solution was obtained by this method.

Thus, it has been demonstrated that the Cyclic ChebyshevSemi-lterative
Method of numerical solution of the two-dimensional Poisson equation can
successfully be applied to a simple test region. Furthermore, to a
great extent it is possible to optimize both execution time and accuracy.

NUMERICALEXAMPLE

In order to demonstrate the method presented in this report, the
solution of the Poisson equation in the form of equation (Ii) was ob-
tained for the ion-engine configuration described in the section
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STATEMENTOFPROBLEM.The mathematical model is shownin detail in fig-
ure 3. An IBM 70_ computer wasused to solve the numerical example, and
the computer program is given in appendix C.

For programmingconvenience, the region R was divided into five
areas or nets (I, !!, i!I, IV, and V) according to mesh spacings. The
boundaries (see fig. 3) were as follows: (I) the emitter (yl) at a uni-
form potential of i000 volts, (2) the accelerator grid (y2) at a poten-
tial of °i000 volts, (3) the decelerator grid (y3) at ground potential,
(4) the boundaries of symmetry (Y4) with the normal derivative equal to
zero, and (S) the downstreamboundary (rS) arbitrarily chosen with the
normal derivative equal to zero. All potentials are referenced to
ground. The downstreamboundary was located to the right of the decel-
erator grid at a normalized distance of i unit. The treatment of the
downstreamboundary Y5 is arbitrary from the mathematical viewpoint.
From consideration of an actual ion engine, various possibilities may
arise that are primarily related to the problem of neutralization of the
ion beam. For example, the ion flow could be neutralized by the addi-
tion of electrons at the downstreamboundary, and then the boundary
could be specified at a given potential. On the other hand, a more re-
alistic approach maybe to assumethat at the point of injection of
electrons a potential well maybe formed. In that case, it would seem
reasonable to assumethat, at somepoint in the region between the point
of injection of the electrons and the plane of the decelerator grid, the
normal derivative of the potential would be zero.

Becausethe conditions of neutralization are somewhatarbitrary,
the boundary for the example problem was selected with the normal deriv-
ative equal to zero. The location of the boundary i unit to the right
of the decelerator grid was selected from considerations given to trial
solutions of the Laplacian equation. These solutions were obtained with
the boundary located i_ 3_ and 8 units from the decelerator grid. In
each case the normal derivative was practically zero at a point 0.7 unit
to the right of the decelerator grid. Thus, for the Poisson solution_
the boundary (normal derivative of zero) was arbitrarily located i unit
to the right of the decelerator grid. Of course, for the analysis of a
specific ion-engine configuration that includes a meansof ion-beam
neutralization, the treatment of this boundary would require additional
consideration.

The spectral radius of the matrix H was calculated from equa-
tion (13) for each net and is shownwith the relaxation factor _ in
the following table:



Net i Spectral radius,

! ! 0.99155196
ii I .99282155
lllJ .97927164
IV I .99Z76956

V r .99571937

Relaxation factor,

lim

m --_ oo

1.768036

1.786352

1.663131

1.785650

1.830798

As an initial guess for the column vector _2 in equation (ii),

the Laplacian potential distribution throughout the region R was es-

timated from values obtained from a semiconducting resistance paper ana-

log. A linear SF of 0.4 was then used to obtain the solution of the

Poisson equation.

The equipotentials of the solutions of the Laplacian and Poisson

equations for the region R together with typical ion trajectories are

shown in figures 7 and 8. The potential distributions through the re-

gion R (in the x-direction) along a line passing through the wires and

along a line passing t_ough the center of the beam are shown in fig-

ure 9 for the Laplacian and Poisson solutions. It is interesting to

note Irom figures 7 and 8 that, although the position of the "saddle-

point" equipotential is approximately the same for both the Laplacian

and Poisson solutions, the values differ considerably. This effect,

along with similar changes, is made more apparent in figure 9. An iso-

metric view of the potential distribution of the Poisson solution is

presented in figure i0.

The impingement currents on the accelerator and decelerator grids

were determined from examination of the ion trajectories of the Laplacian

and Poisson solutions. It should be understood that physically there is

no current flow for the case of zero space charge (i.e., the solution of

the Laplacian equation); however, these currents could be associated

with the number of trajectories lost because of interception by the grid

wires. The currents on the accelerator and decelerator grid were 17.8

and 18.9 percent of the emitter current, respectively, in the case of

the Laplacian solution, and 19.7 and ii.4 percent in the case of the
Poisson solution. The net beam current was thus indicated to be 69.S

percent (Laplacian) or 68.9 percent (Poisson) of the emitter current for

this model and the given boundary conditions.

The IBM 704 computer time for the Laplacian solution was 37.9 min-

utes. It was necessary to iterate 29A times to obtain convergence. The

criterion for convergence was established by a test using an error func-

tion e. The derivation and a discussion of this function are given in

reference S, and the formula is included in appendix D. In the case
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under discussion a maximumvalue of e = O.iS was used. The portion of
the program from the Laplacian solution to the final solution of the
Poisson equation took 25._ minutes. The criterion for the convergence
of this portion of the program is given in the flow chart in the previous
section. Thus, the computer time required for the complete solution was
61.2 minutes. It is reasonable to expect that with larger and faster
equipment, such as an i_ 7090, the time could be reduced at least by a
factor of C.

CONCLUDINGREMARKS

The primary objective of the work reported herein was to develop a
numerical method of solution of the two-dimensional Poisson equation with
mixed boundary conditions. The problem was approached by replacing the
Poisson differential equation by finite difference equations. The region
for which a solution was sought was overlayed with a closely spaced mesh,
and the finite difference equation was written for each meshpoint. The
result was a matrix equation consisting of N linear equations having
N unknowns. The Cyclic ChebyshevSemi-lterative Method was applied to
solve the matrix equation on an IBM 704 computer. An initial guess of
the right-hand side values of the Poisson e_ation based on the Laplacian
solution alone resulted in overestimation of the right-hand side which,
in turn, led to a "blowup" and no solution. This problem was solved by
application of a suppression-factor technique to the values of the right-
hand side and by use of a check on the upper and lower bounds established
from previous cycles.

The method presented herein is general for any type of external
boundary satisfying equation (2). Great care was taken to optimize the
method and thus minimize the computer time. The numerical example pre-
sented is for a configuration that required on the order of 1500 mesh
points, but analyses for configurations with twice or even t_ee times
as manymeshpoints are anticipated. For such configurations the com-
puter time will be considerably greater than that mentioned for the nu-
merical example. Thus_ selection of the optimum iterative method to-
gether with the optimum relaxation factor is paramount.

In the opinion of the authors, the principle advantages of this
method in contrast with other experimental analog methods are speed,
flexibility, and accuracy.

The complexity of analysis of the space-charge flow in an ion
rocket engine madethe application of the method of solution seema
natural one. From this viewpoint, the method presented herein may find
use as a tool for diagnostic purposes by those working in this area.
With this method, it should be possible to check the ion optics for
practically any specified ion-accelerator geometry for which the two-
dimensional analysis would be adequate.
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A distribution function that will satisfy the Bolt zmannand Poisson
equations simultaneously is being sought so that it will be possible to
consider particle interactions (i.e., ions_ electrons, and neutrals)
that can occur in an ion rocket engine. Neutral particles maybe present
because of inefficiencies in the ionization process. Electrons maybe
present as a result of ion interceptions on the accelerators. In addi-
tion, there is a possibility that the accelerator maybe heated (a re-
sult of radiant heat exchangewith the ion emitter) sufficiently to give
rise to the emission of electrons.

The case of less-than-space-charge-limited flow is of interest, and
future plans include attention to this problem.

The present computer program is being recompiled for solution on an
IBM 7090. The increased storage capacity and speed of this model will
eliminate the necessity of partitioning the region R of the numerical
example, and thus, will speed up the solution considerably. It is an-
ticipated that the execution time of a problem that satisfies the bound-
ary conditions typified by the numerical examplewill be reduced to
about i0 minutes. Then in a matter of a few hours it will be possible
to analyze a configuration of this type with several variations in the
specified potentials.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland, Ohio, June id_ 1962
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APPENDIX A

SYMBOLS

matrix of matrix equation (eq. (5)), area, sq m

matrix, inverse of matrix A

average acceleration, m/sec 2

entries of matrix A

coefficient of Chebyshev polynomials

matrix, multiplier of matrix A

perimeter in sketch (j), appendix B

error function

space-charge-density-distribution function for discrete case,

v/sq m

column vector, Dk

column vectors, odd and even, respectively

mesh spacing, m

unit matrix

current, amp

current density, amp/sq m

column vector of matrix equation (eq. (5))

line segment from point 3 to point L in sketch (e)

real matrix with zero diagonal entries

real matrix with zero diagonal entries (test region)

matrix consisting of odd and even entries of M, respectively

particle mass_ kg

31
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n

q

R

r

t

v

v

w

w

EI,2

x

x_y

r

A

r

_k

E o

P

p(M)

outward normal, station number

unit charge, coulombs

region

subregion of R

time, sec

velocity, m/sec

average velocity, m/sec

potential-distribution function for discrete case, v

column vector of matrix equation (eq. (5))

column vectors, odd and even, respectively

normalized distance (table I)

Cartesian coordinates

integers (I or O)

external boundary of R

increment

Laplacian operator

discrete portion of external boundary

incremental distance, m

fraction taken in y-direction of current tube passing through

subregion r i at station n

permittivity of free space, coulombs/(v)(m)

eigenvalue

space-charge-density-distribution function for continuous case,

coulombs/cu m

spectral radius of matrix M

estimated spectral radius of matrix M, fig. 4

potential-distribution function for continuous case, v
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relaxation factor

relaxation factor for test region

Subscript s:

E emitter

i,j number, 1,2,...,N

k number, 1,2,..._n

L_L' left position

m numberof iteration

N numberof meshpoint

n numberof ion trajectory

o meshpoint

R,R' right position

x,y direction

Superscript s:

m numberof iteration

o initial guess



34

APPENDIX B

DERIVATION OF FINITE DIFFERENCE EQUATIONS

Reference 4 gives the following derivation for the finite difference

equations. For the subregion r i of region R, surrounding the point

Xo,Y o (sketch (j)), the two-dimensional Poisson equation in x,y-
coordinates is

-v%(x,y)= f(w,x,y) (B1)

Xo_Y o + h I

hE I h_

Xo - h2 °'Y° _:o + h4_Yo

r i

I.... _.___ as JI

do _F -I--_-

h5/2

Xo,Y o - h 5

(J)

From the integration of equation (BI) over the rectangle ri_ it follows
that

-f_rm. D£w(x'y)dx dy = f_rl. f(w,x,y)dx dy (B2)



35

By Green's theorem, the term on the left-hand side of equation (B2) can
be reduced to a line integral about the perimeter do of the rectangle
ri, and the equation (B2) can be written as

_do _w(x'y) ds =/_.
- _n

-1

f(w,x,y)_ay (B3)

where _w(x,y)/_n is the derivative in the direction of the outward nor-

mal to do . The line integration is performed in the counterclockwise

manner, as indicated by the arrows in sketch (j).

In order to obtain a five-point-formula approximation, the following

numerical approximations to the integrals of equation (BS) are made. The

function f(w,x,y) is assumed to be constant for the region, and there-

fore the right-hand side of equation (B3) becomes

/_ri f(w,x,y)dx dy _ fo/fi dx dy

The normal derivatives of the left-hand side of equation (B3) are approx-

imated by the central difference formula, that is,

_y o'Yo + _ hl
(BS)

for the y-direction shown in sketch (j). Substitution of the preceding

approximations into equation (B3) and integration give the five-point

formuls, which can be written as

+ )WIXo,yo-%1 + o h4,yo

{h_+ h_ hi + % h2 + h4 h3 + hi]
+_ 2h + 2h_ + 2h3 + 2h4 ,_(Xo,yo)

= 2 2
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Now if the points in sketch (j) are identified as

Wo _ W(_o,Yo)

W I _ W(Xo,Y 0 + h I )

w2 _ w(xo - h2,yo)

w3 _ W(Xo,Yo - h3)

w4 _ W(X 0 + h4,Y o)

and if uniform mesh spacings (h : h I = h2 = h3 = hA)

tion (B6) becomes

are used, equa-

i I foh2
Wo - _ (_l + w_ +w 5 + w_) :

(BT)
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APPENDIX C

IBM 704 ION-ENGINE FORTRAN CODE AND BLOCK DIAGRAM

By Carl D. Bogart

Because of the storage limitations of the IBM 704 computer, the ion

engine code was divided into four logical elements (core loads) by use

of the "ping-pong" feature_ whereby a core load is stored on tape as an

open subroutine until it is needed. The core loads were as follows:

Core load Subroutine

I Data input and calculation

of eigenvalues

II Solution of matrix equation

III Calculation of trajectories
and RHS

IV Upper and lower bound check

on RHS and modification,

if necessary

A schematic representation of the Fortran program appears next_

followed by a symbol list, a flow chart of the control of the program,

and a complete Fortran listing with the data for a sample case.

HI Conditional I Iiterat ive
Start Data eigenvalue ____solut ion of

input calculation I _aplac ian

and exit I Iequation

Conditional of trajec- Conditional
exit tories and exit

RHS

conditional H!terative

modi£ication _--_solution of

I F °iss°n

of RHS I Iequati°n

asame program as Poisson solution with RHS equal to zero.
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Control words

ICAL

JOT

KB

KRL

MO

NBH

NBLOC

NDA

NDB

NH

NLA

NLB

NLC

NPIT

NRD

NRL

NTJ

Symbols

initially to changeNULfor Poisson; later as switch to indicate
end of problem

numberof lines of trajectories to be printed out

positive_ all print-outs occur negative or zero, no print-outs

cycle counter

positive, test RHSupper bound; negative, test RHSlower bound;
zero, no test

initial distance between ion trajectories

numberof regions

positive, intermediate print-out of RHS; negative or zero, no
print-out of intermediate RHS

if used with eigenvalue calculations: positive indicates input
matrix is from dumpfor restart, negative or zero, matrix will
be calculated; if not used with eigenvalue calculation and
equal to 120: initial guess for potential field will print
out, otherwise not used

numberof heading cards to be read in and printed out

numberof LA's to be read in

numberof LB's to be read in

initially numberof LC's to be read in; later frequency of poten-
tial field printed out during iteration

negative, eigenvalues to be calculated; zero, potential input is
from resistance paper; positive, potential input is from dump
for restart

negative, print out maxim_ change in potential field every
iteration; zero, print out potential field and maximumchange
in potential field every iteration; positive, print-out will
not occur each iteration

numberof cycles

numberof trajectories
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NTP numberof KT's or XT's plus eight

NUL numberof iterations on matrix equation

Problem specifications

A

DC

DCC

EPS

H

JT

KT

LA

LB

LC

LD

RX

SIZE

VA

VAT

VB

V_T

VC

XQM

XT

YEP

atomic number

distance from emitter to accelerator grid

distance from accelerator grid to decelerator grid

convergence test for matrix equation

mesh size

vector of type numbers

vector of relative subscripts

transfer vector for boundary points

14 per region, which describes matrix calculation

five per region, which controls trajectory calculation

four per region, which controls equipotential calculation

suppression factor

condition for equipotential

emitter potential

condition for equipotential

accelerator potential

condition for equipotential

decelerator potential

charge-to-mass ratio

vector of weighting coefficients

permittivity of free space
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ION ENGINE FORTRAN SUDE

MAIN COKE I-DATA INPUT

COMMON U,RH,JI,KTtXT,LB,LA,XR,XEP,NUL,XMP,VAtVB,VCtHtDC,DCC,

I NDB,XW,NPIT,NBLOC,YEP,X_M,A,RX,JUT,NBH,NLC,NJS,NRDtNDA,NAJ,

2 CU,AY,AX,DX,DELY,VY,VXtBH,LD,NTJ,NRL,KRL,CHUPtCHLWoMOolCALo

3 LC,EPS,_B,VAT,VBT,SIZE,RHUP,RHDOWN

DIMENSION U(IbOO),RH(LbOO),JTI5[O),KTIISO),XTIISO),LB(gB),LAI85),

1 XKIlI,XEPIl),XMPII),XWI1),KBIL3),LCI35)tCUI26),AYI22),

2 VX{22),VYI22),LDILH)

DIMENSION VATII),V_T(I),SILEIll

READ INPUT TAPE 7,1OI,NHoJOT,NLC,NBHtNJStNRDtNDAt_TJtNRL_ICAL

DO 99 J=I,NH

READ INPUT [APE 7o

99 WRITE UUTPUT TAPE

READ INPUT TAPE 7,

REAU INPUT TAPE 7,

READ INPUT TAPE 7,

READ INPUT TAPE 1,

hEAD INPUT TAPE 7p

R_AD INPUT TAPE 7p

DO 40 JL=I,NHLU_

40 READ INPUT TAPE 1,

K_L = NRL

MO = I

X_M = XQM/A

DO 2 J=g,NTPo5

K = J+4

Z READ INPUT TAPE

READ INPUT TAPE

DO 3b J=l,5IO

3b JT(JI = 0

REWIND 3

I READ INPUT TAPE

IF(JA] 3,4,3

3 DO 5 J=I,JC

READ INPUT TAPE

KC = [

DO b K=IoKA

IO JD = KB(KC)

IF(JD) b=bp7

7 JE = KBIKC*[I

DO 9 L=L,JD

JB = JB+t

9 JTIJB) = JE

KC = KC÷2

_O TO 10

6 KC = I

5 CONTINUE

WRIIE TAPE 3,JT

L00

6,100

LOL,NUL,NBLOCtNPIT,NDB,NLBtNLA,NTP,NT,NLtIVY

[OI,ILB(JJ,J=I,NLB)

LOL,(LA(JI,J=IoNLA)

[O[,(LDIJ),J=I,28)

IOI,ILC(JI,J=I,NLCI

IO4,YEP,X_MtA,RX

|O3,VATIJLI,VBT(JLI,SIZE(JL|

7,|02,(KT(M),M=J,K),IXT(M)tM=JtK)

/,|O3,VA,VB,VCtH,EPS,DC,DCC

1,10I,JA,JB,JC

7,1OI,KA, IKBIKI,K=lo|3)
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GO TO 1

4 KEWI;_D 3

IFINPIT) 51,21,22

51 CALL EVC

GO TO 33

21 CALL VLAO

bO TO 29

22 CALL BCKEAD(UllbOOI,Ull))

29 IFI;_UB-120) 33,3_,33

34 J_ = I

DU 200 JL=I,NBLOC

JDb= LB(JB+21-L_IJB+I)

WRIIE OUTPUT TAPE 6,300,JDB,JL

_$ = L_IJR*I)

KH = LBIJB*2)

J = |

DO 201K=KGtKH

XI(J) = U(K)

JI (JI = K-LB(JB)

J = J*|

JOb = JD8-|

IF (J-9) 20Lt231,231

23I WRITE OUTPUT TAPE 6p30[,(JI(M)pM=I,811{XT(M)tM=I,8|
J = 1

IF (JD_) 200,200,201

20[ CONTINUE

IF (J-2) 200_235,235

23b DU 23b K=J,8

Jl (K) = 0

236 XTIKI = O.

WRITE OUTPUT TAPE 6,30|,(JT(M),M=|,BI.(XT(MI,M=|,8)

200 J_ = JB÷l_

33 R_AD INPUT TAPE 7,103,IXRIJI,J=I,NBLOC|

WRITE DRUM 2,2,U

DO 15 JL=I,NBLUC

READ INPUT TAPE /II03,XNeXM

35 XMP(JL) = 2.I((XN**2+XM**21/(XNeXM|..2)

READ INPUT IAPE /,IOI,NPIIt_LC

READ INPUT TAPE 7,IOI,(KB{JI,J=I,[3I

DO 98 J=ltl600

98 RH(J)=O.

20 CALL PING(O)

|OO FURMAT(72H

l

lO| FORMAT

102 FORMAT

103 FORMAT

104 FORMAT

300 FORMAT

301 FORMAT

14151

514,5FI0.5)

7FIO.b)

7E|0.5)

IH 15,30H INITIAL INPUT FOR U IN REGION 121

IH 814,8FLI.4)
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C EIGENVALUE CALCULATION
SUBROUTINE EVC

COMMON U,RH,JT,KT,XT,LB,LA,XR,XEPeNUL,XMP,VAeVB,VC,H,DC,DCC,
l NDB,XW,NPIT,NBLOCtYEPtXQMtAtRXtJOToNBHINLCINJStNRDtNDAtNAJI

2 CUtAYtAXpDXtDELYeVYtVXtBHeLDINTJtNRLIKRLtCHUPtCHLWIMOtICALt
3 LC_EPS_KBtVAT_VBTtSIZEtRHUPtRHDOWN

DIMENSION UI[600|,RH[L600)oJI[SLOItKTIISO)IXT[1501tLBI98|tLAI85}t
I XRIT)tXEPI7)tXMPI/)oXWI7)tKBII3}_LCI35I,CUI2_I,AYI22)I
2 VXI2_)tVY(22)tLD(281
DIMENSION VATIT),VBTI7)tSILEITI

DIMtN$1DN UB(510)

JB = l

DO 9b JL=ItNBLUC
READ TAPE 3,JT
NEVCT = NEVCT÷I

IF (MM) 30,99,30

99 READ INPUT TAPE 7197tMMtNLEVINUEVtNUDB

WRITE OUTPUr TAPE 6,97,MM,NLEV,NUEV,NUDB

30 IFINEVCT-NLEV) 87,31,31

31 IFINEVCT-NUEV} 98tgBt87
98 N = NDB

JREG = JREG+|
WRITE OUTPUT TAPE 6vIBIJREG_NeJ
KG = LB(JB+E)-L_|JB)
KH = LB(JB+2)-LBIJB)
KJ = KG-I
JS = -I

IFIN) 51,51,52

51 DO 3 JO = KG,KM
IFIJTIJD-I)} Ll,[l,12

II UIJ_-II = O.
GO TO 3

12 UIJD-I) = I.

3 CONTINUE

JE = 0

GO TO 13

52 CALL BCREAD (U(KHI,UIKJII
JE = N

I3 DO 2_ KK=ItMM
JE = JElL

DO 2 JD = KGwKH

RH (JO-I) = O.

KE = JT(JD-I)
IFIKE) 2t2,b

b _U = KTIKE)_JD-[
KD = KT(KE_I)+KU
KL = KT[KE+2}+KU
KR = KI(KE+J) + KU
RH(JD-I) = XT(KE)-U{KU)+XT{KE+I),U(KD)+XTIKE÷2)*U(KL)÷XI(KE+_)e

I U(KR|



2 CONTINUE

IFIJS) _5,4_,4k

_5 DO _3 K=KJoKH

UBIK) = U(K)

k3 UIK} = RHIK)

GO TU 24

_ XL = O.

XS = [.

DO _ JD=KGtKH

IF (U(JD-II) 4t4t5

5 X = KHIJO-|)/UBIJD-|)

IFIXL-X) 718t8

7 XL = X

NL = JO-|

8 IFIXS-X) 4_4t9

9XS=X

NS = JD-l

CONTINUE

WRITE OUTPUT rAPE 61¢[tJEtXStXLINS,NL

YL = RH(NLI

DO [6 JD=KGoKH

[_ U(JU-|) = RH(JD-[I/YL

[F(XL-XS-I.OE-7I |5,[5t24

2_ JS = -JS

[F(NUOU) qS,LS_95

e5 W_IT£ OUTPUT TAPE 6tk21(U(JIIJ=KJwKHI

[5 CALL BCDUMP {U(KH)oU(KJ)}

GO TO 96

87 J_EG = JREG+|

9b Jd = JH÷_

_ETU_N

lb Fj_HAT (20H EV CAL REGION

_[ F(JRMATI20H LOW HIGH

_2 FORMAT I 2H , 22F5.3)

97 FORMAT (_15)

3151

IS,2F[3.8tSH 216)

C READ IN INITIAL U VALUES

SUBROUTINE VLAD

COMMON UtRHIJT,KTtXTtLBtLAeXRtXEPINULtXMPtVAtVBtVCtHeDCtDCCt

I NDRtX_tNPIT_NBLOCwYEPtXQMtAIRXjJOTINBHtNLCtNJSpNRDINDAtNAJt

2 CU_AYtAXtOX,DELYtVYtVXtBHtLDtNTJtNRLtKRLtCHUPtCHLWeMOtICALt

3 LCtEPStKBtVAT,VBTtS|LE_RHUP_RHDUWN

DIMENSION UI[bOO),KHI}bOOItJI{5}O)tKTI}50)_XTIISOI_LBIgB)tLAI85)_

I XKI7I,XEP(?I,XMPIT)_XW[fItKBII3ItLC(3§)tCU(2_I_AY(22|_

2 VXI22I_VY(Z21,LDIZBI

DIMENSION VAT(fI,VBTI7I,SIZE(I|

JB = I

O_ |0 JL=|_NBLOC

READ INPUT TAPE ?_[00_NCtNR

READ INPUT TAPE 7_[Ot_(RHIK)tK=|_C)

KL = I÷LBIJB÷5)÷LBIJB)

KR = NR÷LRIJB÷5)*LB(J8)

D0 9 I-[,NC

DD B J=KL_KK

8 UlJ) • PHIl)

KL • KL÷NR

9 KR = KR÷NR

_0 JB = JB÷l_

L R_TU_N

IO0 FORMAT(_IS)

LOL F_RMATITFIO. 5)
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MAIN CURE 2-SOLUTION OF MAIRIX t_UAI|UN

COMMON U,RH,JI,KI,XI,LB,LA,XR,XEP,NUL,XMP,VA,VB,VC,H,DC,DCC,

I NDB,X_,;_PII,N_LUC,YtP,XQM,AtRXtJOT,NBH,NLC,NJS,NRD,NDA,NAJ_

2 CU,AY,AXt_X,DELY,VYtVXtbH_LD,NTJtNRLtKRLtCHUP,CHLWtMO, ICAL,

3 LC,EPS,KB,VAT,VHT,S|LEtRHUP,RHDOWN

DIMENSIDN U(I600),_H[IbOO),JI{SI0),KTIIS0),XTIIS0),LB(gH),LA(85),

[ XR(l),XEP[7),XMPII),XN{l)mKB(13],LCI35),CUI2_),AY{221,

2 VXI_2|,VY(22]pLD(28)

OIMEISIUN VAI(/I,V_T(I),SILEII)

CALL I|MEI[T)

|F(_PII) 31,31,32

31 _S = O

CH : 0.

_PK = 0

READ DRUM 2,2,U

TM = I

OD _0 NL:[,'JUt

J8 = I

KWL = _L

REWI_4D )

DO 20 JL=I,NBLOC

43 KA = LB(JH)

REAU TAPE 3,J[

K3 = LH(JB+[}

KH = LB(JB+2|

XEP{JL| = O.

XM = .25eXR[JLloo2

IF(NS) 2,1.2

I DO _ JO=KG_KH,2

KF = JO-KA

KE = JI(KF-|]

IFIKE) 4t4t3

3 KU = KT(KE)+JC-[

KD = KT(KE÷I)_KU

RL = KT(KE÷2)_KU

K_ = KT(KEe3)_KU

OLD = U(JD-I)

U(JD-[) = XI(Kb_I.RHIJD-|)_XT(KE)*U(KU]eXTIKE÷I|eU(KDI_XI(KE+Z)e

l U(KLI+XT(KE+3)'UIKR)

U[F = ABSF(U(JD-[)-OLD|

|F(XEP(JLI-DIF| _0,_,_

_0 XEPIJL] = DIF

LC(JL+30)=JO-[

4 CONTINUE

XW(JL) = 2./I2.-_.JXM)

GO TO 13

2 XWIJLl = [./[I.-XMmXa[JL)I

DO 6 JD=KG,KH,2

KF = JD-KA-|

KE = JT(KF)
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IFIKE) 6e6o7

7 KU = KT(KE)*JD-[

KO = KT(KE*|)+KU

KL • KT(KE_2)tKU

KR = KTIKE_])+KU

TUO = XT(KE+4)*RH(JD-I)tXTIKEIeU(KU)_XTIKE÷I)eUIKD)eXTIKEe2|eUIKL)
[ ÷XTIKE*3)eU(KR)

OLD = U(JD-I)

U(JD-I) • XWIJL)e(TUO-U(JD-I))+UIJD-[)

D[F = ABSFIUIJO-I)-OLO)

IF(XEP(JL]-DiF) 60tbpb

60 XEP(JLI = DIF

LC(JL+30) = JD-I

6 CONTINUE

XW(JL) = I.III.-XM*XWIJL))

13 DO 9 JO=KG,KH,2

KF = JD-K&

KE = JT(KF)

IFIKEI 9t9=8

8 KU = KT(JE)eJ0

KD = KT(KE_|)eKU

KL = KT(KE+2)tKU

KR = KT(KE÷3)eKU

TUU = XT(KE÷4)eRH(JO)_XT|KE)sU(KU)eXT{KE÷I)eU(KO)eXT(KEe2)eU|KL)e

1 XTIKE_3)eU(KR)

OLD " UlJOI

UIJD) = XWIJLI*ITUO-UIJD))+UIJO)

DIF • ABSF(U(JO)-OLD)

IF(XEPIJL)-O[F) 90,9,9

90 XEPIJL) - O[F

LC(JL÷30I • JO

9 CONTINUE

K_ = KH+II

KH = LB(J8+4)

IFIKH) 21,21,22

22 DO 25 JO=KG,KR

KF = JD-KA

KE = -JT(KFI

[F(KEI 25t25t26

26 KU • KT(KE)÷JD

KD = KTIKE÷L)eKU

KL = KTIKE+Z)+KU

KR = KT(KEe3)_KU

UIJD) • XT(KE+4)iRHIJO)+XT(KE)eU(KU)_XT(KE_I)eU(KD|eXT[KE_Z)=U

I (KL)÷XTIKEe3)eUIKR)

25 CONT|NUE

21 K[ = LBIJB_3)

27 KA - LAIKI)

[F(KA) §t5,24

24 JO = LA(KIeI)
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JE = LAIKI+2)

JF = LAIK[÷3}

J_ = LAIKI÷4)

DO L2 J=ltKA

U(JO| = UIJE}

JD = JD+JF

[2 J_ = JE÷JG

KI = KI_5

GO TU 27

5 CONTINUE

20 Jb = J8+|4

_S = l

CALL TWOOUT(KPKtK_L}

CALL CHR{CH,KWL)

[F(CH) 30t30,bb

30 CONTINUE

50 IFIUI22}-VA) _2,41,_1

41 DO 44 J=|t|b00

_ RH{J)=RH(J}*RX

KHUP=RH([2|

KADO = KWLCKADD

GO TO 31

_2 CALL I_SIICH,KWL)

CALL IIME[(I!

IM = T-IM

KWL = KWL÷KADD

WRITE OUTPUT TAPE b,IOO_KWLtIM

32 CALL PING{0I

LO0 FORMATIL6H TIME TO EXECUTE [4,14H U ITERATIONS= Fb.2,gH MINUTES
[ .l
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CONVERGENCE TEST
SUBROUTINE CHK(CHtKHL)

COMMON UeRHIJTtKTIXTeLBILAtXRtXEPINULtXMPtVAtVBIVCtHeDCtDCCe
| NOBtXWeNP|TINBLOCtYEP_XQMeAIRXtJOTtNBHtNLCeNJSINRDtNOAtNAJt
2 CUtAYtAXtDXtOELYtVYtVXtBHtLDoNTJtNRLtKRLtCHUPeCHLWtMO_ICAL,
3 LCtEPStKBtVATtVBTtS|ZEtRHUPtRHOOWN

DIMENSION U(LbUO|_RH(|6OO|IJT(SEO|oKT(LSOItXT([SO)tLB(gB|ILAIBS|t
| XRITItXEPITItXMPt?)pXWI7IeKBII3)eLCI35)eCUI26|tAY(22)I
2 VXi22),VY(22|,LD(28)

DIMENSION VATITItVBTi7|,SIZEI?!
IFISENSE SWITCH b) 201,200

201 CALL BCDUMP(UII6OO)tU|I))
NRO = 0

CALL rWOOUT(KPRoKWL)
W_|TE OUTPUT TAPE 6e100
PRIN| |0]
PAUSE 77777
GO TO 202

200 XCON - XEPII)eXMP(I)

DO I JL=2,NBLOC
IFIXCON-XEPIJLIeXNP{JL|) 2t|tl

2 XCON = XEP(JL)eXMPIJL)
I CD_IINUE

IF (XCON-EPS) 3t3t_
} CH = |.

JEX = KWL-NPIT

WRITE OUTPUT TAPE 6,102tJEX
WRII_ OUTPUT TAPE 6ttOItEPS,XCUN

6 RETURN
202 CONTINUE

100 FO_MAT(|bH DUMPED BY SSW6. )
10[ FORMAT| 20H CONVERGENCE FACIOK= FB.btgH EPS|LON= F8.6|
|02 FORMATI|6H CONVERGED iN U 13)

103 FORMAT|5|H BU_ART PROBLEM DUMPEDtRA|SE SSWb AND P_ESS START. )

TEST ON CYCLES AND PRINT-OUT
SUBROUTINE TES[ ICH,KWL)
COMMON UtRHtJT,KTtXTeLB_LAtKRtXEPtNULtXMP_VAtVBtVCtH_OCgOCC_

I NDB_XWtNPIT,NBLOCtYEP,KQNtAeRXtJOT,NBHtNLCoNJSoNRDtNOA_NAJe
Z CUtAYtAX_OXtOELYtVYtVXtBHILOtNTJ,NRLtKRLtCHUPtCHLWtMOt|C&Lt
3 LCtEPStKB,VAT,VBT,SIZEtRHUPtRHDOWN
DIMENSION U(IbOO|tRH(IbOOItJTISIOJpKT([50)_XT|[50|_LB(gBItLA(BSIt

L XR(7),XEPI7)tXMP(TItXW(TItKBII3)mLCI]5)eCU(26)tAYI22)t
2 VKI22),VYC22),LD|28)

DIMENSION VATITI,VBT(7),SIZE(T)
CALL BCDUMP IUIIbOO),UII])
NUL = ICAL
IWRL • NRL-KRLeXABSFIMO)

12 IFIKB(IWRL)) IL,LL,13
13 KPR • NLC

CALL TWOOUT(KPR_KWL)
CALL E_LINE

11 WRITE OUTPUT TAPE
IFIICALI 6t2o2

2 IFIKRL) 3o6e6
wKIrE DRUM 2tZpU
REIURN

3 WRITE oulPur TAPE 7riO4
10 CALLPONG(I)

103 FORMATI8HOR LOOP 12_3H U= F||._)
LO_ FDRMAT(IIH NEXT CASE. I

6,103,1WRL,UI|2|
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C PRINT-OUT

l

/t

2

OF POTENTIAL FIELD
SUBROUTINE TWOOUT(KPRtKWL)

COMMON UtRHtJTtKTtXTtLB_LAtXRtXEPtNULtXMPtVAtVBIVCIHtDCtDCCt
I NOBtXMtNPITtNBLOCIYEPtXQMmAtRXtJOTtNBHtNLCtNJStNKDtNDAtNAJt
2 CUtAYIAXtDXtDELYtVYtVXIBHtLOeNTJtNRLtKRL_CHUPtCHLNtMOtICALt
3 LCIEPSIKBBVATtVBTtS|ZEIRHUPIRHDONN

DIHENSION U(IbOO)tRHIIbOO)tJTISIO)pKT([50)_XT([50)tLS(98)pLAI85)t
[ XRI7ItXEP(7)tXMPI1)IXW(T}tKSiX3)pLC(35)tCU(24)tAYI22)o
2 VXI22),VY(22),LDI2B)

DIMENSION VAT(7)_VBT(7)tSIZE(T)
JEX = KWL-NPIT

IF(KPR-NCL) [_eltl

IF(NRD) Itltl3
WRITE OUTPUT TAPE 6tl0OtJEX
J8 = I

DO 6 JL=LtNBLOC
KT(JL) = LC(JL+30I-LB(JB)
JB = J8+14
XT[JL) = XMP(JL|mXEP[JL|
WRITE OUTPUT TAPE 6tIO2t(KTIH)tXT(HIIM=IoNBLOC)
IF(NRDe(KPR-NLC)) |3t2t[3
JH = I

[FIMO) 7t6t7
DO 40 JL=IINBLOC
JDB = LB(JB+2I-LBIJ8+I)
W_ITE OUTPUT TAPE 6,IO_tJDUtJL
J = I
KH = LBIJB÷2)
KG = LBIJB+L)
DO 29 K=KG_KH
KTIJI • K-LB(JB)
XTIJ) = UIK)
J = J+I

JOB • JDB-I
IF(J-9) 29t31t3I

31 WRITE OUTPUT TAPE
J = I
IF(JOBl_E.6It29

29 CONTINUE

_1 IF(J-2) 40t3fitJ5
35 DO 36 K=Jt8

KT(K) = 0
3b XTtK) • O.

W_ITE OUTPUT TAPE

_0 JB = JS+[q
KPR = 0

13 KPR = KPR+!
RE TURN

b READ ORUN 2t2tKH
DO 160 JL=ItNBLOC

6tI03,(KT(MIeM=ItSIt(XTIH)tM=ItS)

6,L03,IKTIH),M=LwBItiXT(M)tH=Lt8|
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JLJt_ = L_(JB*2}-L_(JB+[)

_ITk tJUTPUT TAPE O,I04_JDBIJL

J=i

U[I |29 K=KGtKH

xT(J) = .5=(U(K)'RH(K) }

J : J+[

Jb_ = JOB-}

IF(J-9) 129)13L,|3|

[31 ._lrE OUTPUT [APE 6,10]olKIlHltM=lt8),lXTlM),H=|,8l

J=|

IF(JU_) I_1,I_1_129

12_ _DNTINUE

}_i [FIJ-2) }_Oti35p[35

I35 UU [J6 K=Jt8

KT(K)=O

136 xT{K) = O.

_ITE UUTPUT TAPE btI0],(KT{MI,M=Iw8)tIXTIM),N=L,8I

l_O J_ = J8.|4

D_ I50 J=l,160

150 U[ J)=.b*(UIJ)*_H[J))

JOT = 200

[CAL = -g9

GJ TU 13

|00 FC]_MAT(I}H U ITERATION 131

lOI FOKMAT(IM 5FLZ.b)

|02 FURMAT(IH 7(15jF12.b))

103 F[}_MAT(BIS,SFII.4)

lO_ FL)KMAIilH 13,2td U VALUES FROM REGION 12}
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C P_INI-UUT OF E_UIPUTE_TIAL LI,_LS

SUBKOUT|WE E_LINE

COMMUN U,RH,JT,KT,XT,LB,LA,XR,XLP,_ULtXMPtVA,VBpVC,HtDCIOCCt

l NDB,XW,_PIT,NbLUC,YEP,X_M,A,RX,JOT,NBH,NLCeNJS,NKD,NOAeNAJt

2 CU,AY,AX,OX,OELYtVY_VXt6H,LD,NTJoNRL,KKLtCHUPeCHLNIMOt |CAlt

3 LC,EPS,KB,_AT,VBTtSIZEmKHUPtRHDON_

DIMENS|L]N UiIbOO)tRHIIOOO)tJTISIO),KTI ISO),XT(150)tLB(981eLA(85)t

l XRI7),XEP(?),XMPIl),XwlT),KBII3)tLCI35),CUI24},AY(22},

2 VX(22),VY(22),LD(28)

CIHENSION VAT(/),VBT(I),SILE(7)

|_ = -i3

J_ = !

DO IO JL=I,NBLO_

ib = IB*14

20l POTEN = VAT(JL)

61JE = LD(JB)*LB(|6)

JD = LD{jBeI}-[

JC = LDIJB*2I

OX = LDIJR¢3)

OX = DXeH

bX = O.

JED = JE*JO

L=l

|F(JL-I) 9t9_8

9 AX = O.

8 DO 7 JJ=I,JC

KS = L

33 AY = O.

U0 6 K=JE,JED

5 IF(KSI 4p413

3 M = l

J = K-LD(JB*[|

GO lO |9

4J=K-I

[9 |F((U(K)-POTEN)=IU(J)-POTENI} Lb, Ib,2

[b D[F = ABSF(U(J)-UIK)I

IFIDIF) 26,26,25

25 IF(R| 27,28,Z7

27 VX|L| • ABSFIUIJ)-POTEN)/DIF*DXCAX

VYIL) • AY

_D TO 30

26 VXILI = AX*DX

VY(L| = AY

GO TO 30

28 VXIL) = AXeDX

VY(L) = ABSFiUIJI-POTEN)/DIFeDX*AY

30 IFIL-7| 40,41,4[

4L _ITE OUTPUT TAPE 6,100,POTEN,(VX[II,VY(IIt 1=1'7)

L=O

40 L = L*I
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2 AY = AY÷DX

b CONTINUE

IF(KS) 31t3L,32

32 KS = O

I_ = O

JE = JE+I

L_L} TU 33

31 JE = JE+JD

JED = JE+JD

l_X = BX.=.DX

AX=A_÷DX

7 CUN r l NUE

IF(L-2I 5l_lltil

11 D,] 12 J=L,7

VX (J) = 0.

12 _/Y (J} = O.

W_.[TE OUTPUr TAPE 6oIOUtPOTEN,(VX([)tVYI[)_I=Ie7)

5]. PLJTtN = POTEN-S[LE(JL)

IF (PL]TEN-VI_T(JL)) IOtSOpS0

bO AX = AX-BX

L_3 TO 6L

l[.) Jr_ = Jl_4

_t TU_I

tOO FO_._I_T(17_IOPOTL-NTIAL (XtYI FU. It2H 7(2H (FS,3tIHtFbo3e2H) ))
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MAIN CURt 3-CgNrAINS TRAJECTORY CALCULATION AND CALLS RHS CALCULATION

CUMMON UtRHpJTIKItXT,L_,LA,XR,XEPtNUL,XMPtVAeVBtVCtHtDCIDCC,

I NDB,XWtNPIT,N_LUC,Y[P,XQM,A,RX,JOT_NBHoNLC_NJS,NRD,NDAoNAJ,

2 CU,AYtAX,DX,DELY,VY,VX,UHtLD,NTJtNRL,KRL,CHUP,CHLWtMO,|CAL,

} LC,EPS,KB,VAT,VBI,SIZE,RHUP,RHDOWN

DIMENSION UII600|,KH||6OO},JTISIO),KTIISO},XT{LSO|,LSIOB|tLAI85},

1 XRIl),XEPIl),XMPII),XWI7),KB(13],LCI35IoCUI24),AYI221,

8I

_12

L4

20

2 VXI22I,VY(ZZ},LD(28)

DIMENSION VATI7I,VBT(TI,SIZEI/}

CALL TIMEIIrl

TM = T

WRITE DRUM ),),RH

bH=NbH

BH=BHeH

XK = 14./g.)QYEPtSQRIFI2.*XQM)

ANS = O.

JDA = NDA

NPII = 0

_AJ = NIJ*L

J_ = [

DO 3 JL=t,N_LOC

IFIJL-I) 5,5,4

5 AX = O.

VY(LI = O.

AYiI! = BHe.5

VXiL) = O.O0001

DO 9 J=2,NIJ

AYIJ) = BH+AY(J-I)

VX(JI = O.O00O[

9 VYIJ) = O.

NDI = JOT

S_ = O.

JA = [

4 OILY = LCIJA|

OELY = HeDEEY

DX = LCIJA+4)

DX = H*DX

JC = LC(JA*|)

JE = LC(JA+ZI

RM = DX/YEP

JO = LC(JA+})

XD = .5*X_P/DELY

[_(JL-[) I4,14,_i

[F(LC(JA-SI-L_(JA) ) 82_i4,_Z

Sn = I.

IF lAX) 20,20,2[

X = XK'BH/IOX''2)

SUMUNE = O.

0[] 2Z K=I,NAJ

M = Ji÷{_-l)/2
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MH = JEeK/2

Y = Uil)-.SmIU(M)_U(M_]}

CUIK) = X*Y*SUgIFIY)

22 SUMUNE = $UMONEtCU(K)

WRITE UUTPUT TAPE 6,107,1CU(_NItNN=ItNAJ}

21 OD lO JN=ItJC

J[C = JE_JD-I

IF($W) l?,_btlT

_b AX = AX*DX

DO [| K=|INTJ

IFIAY(K)+I.) 83t[[,83

H3 AD = AYIK)/D_LY

JX = AD

XA = JX

XA = AO-X4

JP = JX+JE

JS = NJS

J@ = JP-JO

UL = (1.-XA)*U(JQ)+XAeU(J_÷|)

U_ = ([.-XA)eUIJP)*XA*U(JPt|J

DUX = UK-UL

YA = XA*VYIK)/VXIK)

IFIJX} 21b,ZLb,218

2[b YA = 2.*XD*IXAtlU(JU*I)-U(J_))tYAeIU(JP_|)-U(JP|||

GO fd IO

2l_ YA = XOe(2.*XA'U(J_)-IXA+.b)*UIJQ+I)*(.5-XA)eU(JQ-II÷2.mYAeU(JP)

I-(YA*.b]tU(JP*I)*(.5-YA)eU(JP-I))

YA = -YA

ib VXb = S_RTF(VX(K)o*2-2.*X_MeDUX)

DI = 2.*DX/iVXu*VX(_))

DY = DIw(VY[K)-.b*YA*DI)/D_LY

JS = JS-I

IFIUY) 833,8_,_33

_34 Y& = O.

OU TO 901

833 Xb = XA*DY

818 US = ([.-X6)eU{Jw)*X_eU{J_÷[)

U_ : II.-XB}eU(JP)*X_*U(JP*I)

DUX = .5=|UR-UL-US+U_)

YA = XDelUS-UL_UQ-UR)/DY

901 IF (JS) 15,Lb,[b

15 VXIK) = SQRTF(VX{K)-.2-2..X_MeOUX)

VY(K) = VY(K)-YA-O[

AY(K) = AY(KIeDYeDELY

300 IF(.5-AY(K)) 9_,9_,93

93 IF(AYIK)) 91,91,11

9_ AYIK) = I.-AYIK)

GO TO 95

91 AY(K) = -AYIK)

95 VYIK) = -VY(K)
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II CONTINUE

CALL CORRCTIJLI

%FllAX-,O75-OC)t(AXe.l - DC)| bobt7

b SUMTHO = O.

DO 84 K=I_NAJ

B4 SUMTWO • SUMTWO*ABSFICUIK)|

GO TO 87

I IFI(AX-.O75-DC-DCC)*IAX÷.I -DC-DCC)) Bb_B6t87

8b SUMTRI - O.

00 105 K=I,_AJ

105 $UMTR| = SUMTKI÷ABSF|CUIK)I

B7 IF{NUT) 17,[7,IB

18 NOI = NUT-I

WRITE OUTPUT TAPE b_Lg,NOTtAX,IK,AYIKI,VXIK),VYIKI,K=I,NTJI

17 DO 23 J=JE,JEO

23 RH(J) = O.

SW = O.

CALL CALK{JE,JED)

DO 44 _=JE,JED

44 KH(K) = RH(KlwKM

IFIJOA) IO,lO,41

4l JUA = JDA-I

_RITE OUTPUT IAPE b,43,JE,JEOpAXpIRHIL},L=JE,JED)

lO JE = JE÷JD

[FILBIJB+6}} _8t48t150

150 J = LBIJB+bI+L_IJB)

KG = L_IJB_7)_LBIJB}

KH = LBIJB*B)_LBIJ_}

DO 47 K=KGpKH

RH(KI = .125*(KH(JI÷RH(J*II_RHIJ+IL)*RH(J*12)|

47 J= J*l

[F(LBIJB÷g)) 48,48,15L

151 J = LBIJU_gl*LBIJB)

KG = LB(JB*IO)*LH(JB)

KM = L6(JB÷[LI*LB(JBI

DU 5[ K=KG,KH

RHIK) = .125e(RH(Jl÷RHIJ*_)*KH{J÷I[I*RH(J÷[2) )

51 J = J+l

48 JA = JA+5

3 JB = JB+L4

JOl:O

I_ = NRL-KRL*t

IFIK_IIW)I llO,llO,lll

Ill AR=20..H

UI=SUMONE/AR

_RITE OUTPUT TAPt b,t00,U[

E_l = SUMT_O/SUMONEolO0.

*RITE LJUTPUI TAPE b,IOL,ER[

uL = SUHT_OIAR
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_ITE dUTPUT TAPt b,LO2,UL

[_l : SUMTRI/SUHONL-LOO.

WKi [E UuTPU( TAPE OwL03p_KL

uL = SU_:TRI/A_

_KITL OuTpuT tAPt boLO4to|

|IU CALL TIMEI(T)

Im = T-TM

W_|TE OUTPUT TAPE btlOb,TM

IFIICAL) 400,401,401

_Ol CALL PIhG(OI

400 CALL PUNG(|}

19 FDKMAT (15,1REIS.5,110H Y VX VY 15,]EL5.5I)

43 FORMATI215,1PEI5.311IIEIg.41I

TO0 FOKMAT|I8 HO INITIAL CURRENT=EIZ.b,bH AMPS.)

lOl FURMATI24HOSUaRENT AT ACCEL. GMID= Fb.2,ZBH PERCE_T OF INITIAL

LCURRENT. |

I02 FORMATI24HOCURRENT AT ACCEL. GRID- El2.bt6H AMRS. I

103 FORMAT(24HOCURKENT AT DECEL. _KID = Fb°2,28H PERCENT OF INITIAL

[CUKRENT. )

I04 FURMAT|24HOCURRENT AT DECEL. GRID = EL2.btbH AMPS.)

I06 FUKMAT(3OHOTIME TO CALCULATE TKAJ. $ RH= FS.2tgH MINUTES. I

107 FORMATIIH 7E|b,5)
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CALCULAI[ON OF KHS

SUBKUUTI_E CALR(KE,KED)

CUMM(JN UIRh,JT_K[tXI,L_,LA,XK,XtPtNULtXMPtVAtVBIVCwHIDCtDCCt

! NDBfX_,_PI TpNBLIJC,Y_PpXUMwAfKXrJDTpNBHpNLCtNJSpNRD_NDA_NAJp

2 CU,AYtAX,DXtDELY,VY,VX,HHtLD,NTJtNRLtKRLtC_UPICIILWBMUtICALt

LC,EPS,_B,VATtV_TtSILt,KHUPtRHDUWN

UI|bO0),RH(1600),JT(_[O)tKT|[50),XT|[501,LbI98),LA(8)),

X_(1),XEP(l),XMP(1)tXWII),KBI[J),LCI35)tCU(2_),AY(Z2|,

VXi2L),JYI22)tLDI2_)

VAT(/),VSI(/I,SILL(1)

_IMtNSIuN

[

2

DIM¢NS[ON

J[ = K[

JED : KlO

S_A = O.

IFIAX-.b) 3OO,30t,)01

300 Dd )U2 J=l,r4AJ

3U2 CU[ J) = AHSF(_U{J) )

30[ OJ 2_ J=|,NAJ

If[J-I} 25,25,2b

2_ IFICU(I)} 24,2_,90

90 llI : 2..AY(J)

XH = -AY(J)

JX = AY(J)/DELY

N_ = JX+JE

WA = SURTF(VX(L)*=_*VYIIIoe2)

Wb = WA

YL = AY(I)

GU IU 27

2b |F(J-NAJ) 2_,L9,24

2_ |F(CU(NAJ}) 8B,2_,89

_9 HI : 2.*(.5-AY(_IJ))

XH = AY(NTJ)

YL = XH+HT

JX = AY(_TJ)/DELY

NA = JX*JE

NO = J_D

WA = S_RIF(_X(ITJI**Z+VYINTJ)**2)

bd l_J Z7

2_ |FICOIJ)) 3_,2_,35

}5 dT : AY(J)-AY(J-[)

[F(I_r) _20,[20,[21

[20 }4I : -,iT

Xr_ = AY(J)

JX = AY(J}/DELY

N_ = AY{J-I)IDELY+[.

WA : SURTFIVX(JI**2*VY(J)**2)

_ : S_KTF(VX(J-/}**2+VYIJ-[)**2)

b:) TU |ZZ

L2I xH = AY(J-|)
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JX = AYIJ-I)/DELY

kA = S_RTF(VX(J-I)e*2÷VYiJ-L)*o2)

WB = $_RTF|VXIJ)me2÷VY(J)ee2)

N8 = AY(J|/DELYtX.

LZ2 N_ = JX_JE

N8 = NS÷JE

YL = XH+HT

GO TO 27

36 IF(VY(J-III 123,123,I26

126 HI = AY(J)+_Y(J-I)

NA = JE

IF(SWA) 127,127,128

127 XH = -AY(J-I)

YL = AY(J)

J_ = YL/DELY+L.

NB = JX*JE

WA = $_RTFIVX(J-I)*eZ÷VY[J-I)**2)

WB = S_RTFIVX(J )**2*VY(J l*'2)

SWA = L.

GU [O Z7

128 SwA = O.

XH = -AY(J)

YL = AY(J-L)

JX = YL/OELY#[.

Nb = JX+JE

WB = $_RIF{VX(J-I)**2+VY(J-])**2)

WA = S_RTFIVX(J )*eZ+VY(J )**2!

GO TO 27

123 HI = [.-AY(J)-AY(J-I)

N6 = JED

IF(SWA) [25,t25_12b

125 $wA = I.

XH = AY(J)

YL = I.-AY(J-I)

JX = AY{J)/DELY

NA = JX+JE

W& = S_RTF(VX(J ]ee2+VY(J )=*2)

W_ = SwRIF(VX|J-1)**2÷VY(J-i}**2)

_0 IO 27

i26 S_A:O.

XF4=AY(J-I)

YL=I.-AY(J)

JX=AY(J-I)/DX

NA=JX+JE

WA=_TF(VX(J-L)e=_+VY(J-L)**Z)

w_=S_IF(VX(J )**2+VY(J )*'2)

GJ TJ Z7

8H _r = 2.*(.b_AY(NTJ))

X_ : -AY(NIJ)

YL : XH÷HI
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NA = JE

NH = JE(]

w,A = S_QRTF(VX('_TJIte2÷VY[.'WIJ)wm2)

W_i = WA

27 DU 30 I_=NA,'4b

XA :- K-JE

IFIXAI 32,3Z,J_

32 XUD = -.5eI_[LY

JU = J-|

b_J TL] z,O

33 XUC, = (XA-.5)_DELY

_,0 XX = XUD+DELY

YU = MAxIFIxUU,XH)

YD = MINIF(XXpYL)

if {YD-YU) 30,30,37

37 xA = .51[YD+YU)

IFICUIJ)) 2OOpZ_,2OI

200 CUIJ) = -CUIJI

201 W = WAe(XA-XH}eKWB-WA)IHI

IF (K-JED) 20L,,20_, 205

205 Jd = NAJ-J

ZO_ IF(JU} 202t202,203

203 W -= .5*W

202 KH|K ) = RH|K )÷(YD-YU)eCU|J)/IHT.W)

30 JU = 0

[FIS,A) 24112g,'_4

L29 LI-IJD&) 24,24t30;_

]_03 WRIII: 0UTPUT IAPE b,30c;,J,N&,_IBtIRH(L|,L=NA,NB)

2_ CDNTI NUE

RE TURN

309 FORMATIIH 315//ILP].OEIt.)))
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CORRECTIUN OF T_AJECTOR[ES AT b¢|DS

SUbKUUTINE CORRCTIJL)

CUMMUN U_RH,JT_KTtXTtLB,LAtXRoXEP,NULtXMPtVAtVBtVCtHpDCtDCCI

I NDB,X_,NPIT,NBLUCtYtP,XUMtAtRXtJOT,NBHtNLC,NJS,NRD,NDA,NAJ,

2 CU,AY,AX,DX,DELY,VY,VX,_tI,LD,NTJ,NRL,KRL,CHUP,CHL_,MU, ICAL,

3 LC,EPS,KB,VAT,VBTtS|ZE,RHUP,RHDUWN

DIMENSION UILbOOI,RHilbOO),JI(_IOI,KT(150),XT(150),LB(_SI,LA(85),

1 XR(/I,XEP(l)fXMPIII,XW(l},KBII3),LC(35),CUI24),AY(22),

2 VX(2_),VY(22),LDI28)

[66

lt2

9Z

lLb

81

LOS

lOb

lOl

LSI

L4_

II('

Llo

_o

165

L6Z

Lrl

L6_

DIMENSION VATII),VBT(TI,S|LL(I)

L = NIJ-I

DO Ill KK=[,L

K = KK

|FIAY(K),|.I ll2,lll,Ll2

AYD = AYIK÷L)-AY{K)

[FIJL-2) 138,BI,ILb

IFIJL-4) L38,LIb,L_8

lF(.OoJgob2b-(AX-DC)-e2-AY(K)*.2| i38,iJ8,84

AYIK) = SQRTF(.OO]gOb25-(AX-DCIa=2I

CUIK) = O.

[F(AY(K)-AY(K÷i)) IO?,LObti3b

AY(K) : -l.

CU(KI : O.

bU TO Ill

AYUL : AY(K*L I-AY(K)

LUll*I) = CUIK_L),AYDLIAYD

AYU5 = AYD-AYDL

VY K} : (VYIK),AYDL*VY(K÷I)oAYDS)IAYD

VX K) - [VXIK),AYOL*VX(K÷L}_AYUS)IAYD

IF vY(_).VY(K*[)) l_@, L72,LIZ

CU _*l) : -CU(_*t)

IF _-KR) I6b,Ll|,lll

IF .U03VO_2b-(AX-DC-i)CC )-.2-AY(_I*-2) L38,138,Bb

IF(AY(_-LI+L.) L_L,L_L,L_

CuIK) = O.

b.) Id 174

U[) Lbl KJ=Z,K

IFICOIKJ)) L6l,lb2,iOl

_0 l/| IJ:KJ,K

Cu(IJ) : Cb(lJ+[)

AYI IJ-[) : AYI [J)

VY(IJ-i) : #Y(IJ}

vx(|J-i) : VX(LJ)

CU|K):O.

{,H [!i 16}

CL,_I ;'_Ut

-_I(_ UUIPUI T_PL O,/15

,, Id /
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ANS = ANS-|o

KLJ : Kt[

._ITE ourpur TAPE b,[TS.KU

[0; |P (VYIK)eVY(K-[)) [67t ].bTm Ibm]

_.67 A¥[) = AY(K)_,AY(K-[)

AYIK) = SURIFI.OOJgOb25-IAA-IJC-OC[

VY(I_) = -VY(K)

1_.0 Cu(_*I) = O.

LBtJ AYu : AY(K-I)-AY{K)

L7'J IFICU(K÷[)) LI_,tLb_,L7_

174 IFIVY|KIeVYIKO'L}) IBbt 1]5tl]6

1_5 AYU = AY{K}÷AY|K÷I )

VY(KI : -VY(KI

137 AY(_) = SQRFF(.0339Ob25-(AX-OC-DCC

l} (AY(K}-AY(K*L)) [0T. [42t ]._,Z

[Jb IFIVY(K)) L],7tL$1,[40

169 _YI_,) : SI,)KTFI.00190625-IAX-D_-DC:'-

|[ (AY(K)-AYII_,-I}) [_[_ [06t ],Ob

14,l AYUL = AY(K-I )-AY|K)

CU(K) = CU(t_,)eAYL)L/AYO

AY_ -- AY_-&Y_L

VY(I<,) = (VY(K) eAYDL4"VY(K-[ )aAY_S}/AYD

V,K(K) = IVXIK)eAYDL÷VX(K-I)eAYOS)/AYD

OC) Td 138

l_.Z CUIV,+I) = O.

AY [K) = -I.

Ill CONT l'_UE

RE I U_N

7 CONTINUE

)*'21

}'*21

1''21

lTb FUKNAT(ZOH TRAJECTORIES FKUm ,12,65H UOWN HAVE BEEN RENUHbERED

I HY [ LESS TitAN THE P_EVIUUS NUMBER. }

215 FORMAT(IHO_2OX,IgH SOLUTIU_ I_POSSIBLE/ZIXt6H COR&CT)
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C MAINCUREk-TESTONUPPERANDLO_EKBOUNDFORRHS
COMMONUtRHIJTtKT,XTtL_tLAtXRpXEPINULtXMPtVAtVBtVCtHtOCtDCCt

L NDBtXW,NPIT,NBLOC,Y_PtXqMtAtRX,JOTtNBH,NLC,NJS,NRD,NDA,NAJ,

2 CU,AY,AX,DX,DELY,VY,VX,BHtLD,NTJ,NRL,KRL,CHUP,CHLW,MO, ICAL,

3 LC,EPS,KB,VAT,VBT,SILE,KHUPtRHOOWN

DIMENSION UILbOO)tKHII600),JI(510)tKIIL50)tXT(ISO},LK(98},LA(85}t

I XR(1),XEP(7),XMPII),XW(7],KB(L3),LC(35),CU(24},AY(22),

2 VXIZZI,VYIZZ)tLDIZO}

DIMENSION VAIK?),VBT(7),SIZEI7!

SX = I.

IF(KRL-NKL+I) L,Z,J

3 RHUP = RH(|2)

GJ TO 5Z

Z IF(KHI L2)-RHUPI 4,_,5

5 KHOO_N = RHUP

MO = -MO

KHUP = KH{I2}

G(} TO 5Z

4 KH_OwN = RH(L2)

GO TO 52

L IFIMd} 5_,SZ,SJ

53 IFIRHUP-RHILZI} 56,55,55

55 IFIKH{LZ)-RHDOWN) bL,57,57

5_ IF(IRHILZ)-RHDUWN).(RH(I2)-_HJP)) 57,51,6I

55 SX = SX'RX

DO b8 J=L,Ib00

b8 KH{J)=RH(J)eRX

_O TU 53

6L Pd_ = L./SX

CH = KHIL2I-PD_

RtAD D_UM 3,3,U

DO 7L J=l,lbO0

71RH(J) = .S.(U|J)*RH(J)oPOW)

KKL = I

JJ = NKL÷|

K_IJJ) = ')9

KH(JJ÷[ ) = 99

*_iIE OUTPU[ IAPE 0,100

IFIMU) 75,7_,74

7_ KHUP = CH

GU TO 7Z

75 R_tDOwN = CH

72 MU = 0

51 IFIMU) 58,5Zt59

59 KHUP = RH(|2)

bOT(} 52

58 RHDOwN = RHII2)

52 Xi(L) = .25.RHDJ_N

XIIZ) = .25._dIl2)

Xl(3} = .25._UP

_RI1E UUTPUT TAPE 6,LOL,XTILI,XT(Z),XT(3)

l_ = NKL-KRL*I

IFIK_(IW)I 90,90,9|

9L CALL TKIOUT

90 ML} = -MO

kKL = KKL-I

CALL PONGIZI

_00 FUKMAT{LIH KFt=AVEKAGE )

10i FORMAT( /H R_L]_=Fb.3,@H RH=F6.3,bH RHUP=F6.3}
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C PK|NT-UUT RHS

SUU_OUTINE TRI@UT

COMMON U,RIA,JT,KT,XT,Lb,LAtXK,XEP,NUL,XMPtVA,VB,VE,H,DC,OCC,

I NDB,XWtNPITtNBLOC,YEP,X_M,A,KXtJOTtNBHtNLCtNJStNRDINDA,NAJ,

2 CU,AY_AX,DX_OELY,VY,VX,BH,LD,NTJpNRL,KRL_CHUP,CHLW_MOiICAL_

3 LC,EPSt_B,VAT,VbT,SILE,KHUP,RHDOWN

DIMENSIUN U(lOO01,RHII6OOI,Jr(blO),KT(150},XT(150),LB(981,LA{85),

| XK{ll,XEPIl),XMP{I),XW(7)tKBII3),LC{35),CU(2_)tAY(22),

2 VXI2ZI,VY(22),LDIZS)

JB = I

IFIMU} 1,2,I

1 OU TZ JL=|,N_LUC

JD_ = L6(JB_2)-LU(JB÷[)

WRIT, OUTPUT TAPE b,101,JDUtJL

J = l

KG = LB(JB+I)

_H = L_(JB+2)

DO 29 K=KG,KH

XT(J) = .25.RH(K)

JTIJ) = K-L_IJB)

J = J÷[

JDB= JDU-I

|F(J-9) 29,3lo3l

3[ .RIIt UUTPUI IAPE 6,[02,[JI(M)tM=I,8),(XT(M),M=I,8)

J=t

|F(JU_) 72,72,29

29 CUNTINU_

IF(J-2) 72,_5,}5

)b DO 3b K=J,@

Jr(K) = O

3b XI(_) = O.

W_|TE OUTPUT rAPE b,IO2,{JT(M),M=I,B),(XT{M),M=I,@)

72 J_ = JB+L4

J kErU_N

2 _EAb D_UM ],},U

DU 172 JL=I,NBLOC

JO_=L@lJb+2)-l_(J6_[)

,Kilt UUTPUI rAPE b,10l,JDb,JL

J=l

K_=LBIJ8+|}

KH=L_(J_÷2)

DO 129 K=KG,KH

JT(JI=_-LB(J_)

XTIJI=.IZS*IUI_I*RHIK))

J=J_l

JDd=Ji]B-|

IF(d-g)L29t[)t,l)[

[31 _RITt OUTPUT TAPE b,LO_,IJTIMI,M=I,B),(XTIMI,M=I,8)

J=l

|F(JO8)172,17_,l_9

129 CONTINUE

IF(J-21112,1)5,1_5

l_b DO 136 K=J,8

JIIKI=0

13b XIIK)=O.

wRITE OUTPUT TAP_

172 JB=JB÷I_

GO TO

101FURMAT|IH |5,2JH

102 FOKMAT([H

6,LOZ,(JT(M|,M=L,8),IXT(M),M=[,8)

RH VALUES FROM REGION I2)

81_,8Fll._)
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• OATA

12 200 25 L 4 99 000

1 CASE E-4

EMITTER POTENTIAL=IO00. VOLTS

ACCEL. _OTENTIAL=-IO00. VOLTS

DECEL. PUTENTIAL=U. VOLTS

CALCULATION OF LAPLACE AND PO|SSQ_

SUPRESSION FACTOR IS .40

PHYSICAL END OF PROBLEM IS AT 3.0

H=.025 IN REGIONS 2,4

H=.05 IN REGIONS 1,3,5

U=O. Ib RIGHT HAND BOUNDARY CQNu|TIQN.

INITIAL INVUT IS FKOM RESISTANCE PAPER

t00

0 12 188

20d 2_0 692

llZ lZ4 834

d64 dbo [_48

1368 I $_0 1542

IO 210 199

b91 04) 2

O0 121 70 1

l 208

12 0

23 864

44 0

bb 1565

2 1

t13 629

l 10 866 83_ / 1

u I L 834 928 1 2 l L I t67 128b

1550 2 l 11 1527 1t_0 2 L O

1.2 Ll Ib Z 4) 21 19 1 12

I_ L 12 II L_ 2

Z it, 12 tl Z L _Z Z33 2L

2 L 22 886 21 l 2 15 1380

_.854L-12 9.649_ 7 I $2.91 +-0 .43 _J

lO00. -lOUO.

IOOU. -lO00.

IUOU. -LOO0.

tO00. -LOOO.

LOUO. -bOO.

L -12 IO Z]

-1 2 -10 12

-I 2_ -IO 12

-_ l II 12

-I 2 -20 /2

l -22 20 2l

L -2Z 20 -2

20 10 30

• 25 .00 .25

.25 .25 .25

.L5 .25 .25

• 25 .25 .25

.25 .25 .25

.2_ .00 .25

.15 .50 .25

LL)O.

iO0.

100.

100.

5',).

9 .)U .Z5

D .2b .Z_

U ._J .03

0 .25 .Z)

3 .Zb .Z5

3 .++0 .2:_

3 .O,9 .Z')

11 I0 2 43 21

1 2 LO 724 LL

LL 2

L -22 20 21

1 -d -22 20

L -2 -d2 20

l -Z -22 23

L -2 -d2 20

l -? -22 20

l -2/ J3 -?

t -2 -22 20

3 . _{{]_{] .LZZ2ZZ2Z .44444444 .00 .16666667

.2a/]aL'_3 .LJrSBl){ .242?]4B0 .34Z_o133 .2073B196

O .16061,667 .J_t_33_1 .16o66667 °33333333 .IZ50

J .2427_450 .3_+2bOL_t .23138193 .207)_193 .20738196

J .22222222 .44444444 .[6666667 .1666666? .L6666667

/) .10o6006! .lJJiJJJ3 .3t3_t333 .16666661 .1250

3 .)_3_33 .44444444 .ZZ222222 .00 .1b_66667

O ./3l_dI'_3 .ZJ/3_l't3 ,342_0133 °2427J480 .20738196

65 113 1566 0

0 156 199 208 0 0 0

2L 0 3 0 0 0 0

1L 12 I_ 142 100 143 152

2L 0 0 0 0 0 0

11 12 188 197 0 0 0

11 Z30 lfl L 1 0 Ll 18B 2T2

1 Z O 11 671 724 2 1 I0

Ll 8U6 823 2 I

L 2 0 lO 1349



-121 l II 12 0 .25
-43 I II 12 0 .25

-17b I ii 12 0 .25

I -E -12 I0 0 .bO

l -2 -12 I0 0 .2_

I -_ -12 I0 0 .00

lO00. -I000. O.

l 0 3

I II 0

16 i 9 9 L4
l LL 0 lO -2_

2 o 14

l 22 0

IO I 29 l 0
4 l 3_, 19 29
l l 46 I 4-_

L 2 0 l 5_

l 3 o I 5-_

l _ 0 L b_

l 3 0 l 5_

l 2 0 l b9

l L 7_ I 79
9 l 36 Lg 29

I 0
lO l 29 i 0

I 2L 0

3 0 5

L II 0

lO l 9 9 14

l II 0

l lO -8_

I lO -89
4 0 lt*

L 22 0
LO l 29 I 0

5 L 34 L_ 29

I l 4_ l 49

I 2 0 l 54
I 3 o I b_

I J 0 I b4
I 3 0 I 59

l 2 0 I 69

l l 7_ I 79

B l 34 L9 29

l 1 0

I0 L 29 l 0

l _L 0

5 0
L II 0

15 l 9 9 L4

.25

.03

.Zb

.SJ

.029

i _9

18 Z9

ll _9

L6 _9

16 _;

16 2_

18 Z9
L 3'_

l l 9

l J9
IB 2_
II 2'_
i6 LJ

L6 z;P
L6 zJ
L7 z')
L 8 _'_

l 19

.25

.Z5

.2')

.53

.bO

.59

.Z_

39

_J
39

39

_9

39

_9

31

39
39
39

.25

.25

.03
•C,)

.O0

i.O

.2'J

l.J

65
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i 11

I I0

0

18 II

I000.

420.

-180.

69 T

-475.

-450.

-345.

-I000.

-680.

-435.

-700.

-530.

-440.

-500.

11 II

-460.

-275.

59 1

-_20.

-190.

-205.

O.

-80.

-150.

-55.

-90.

-115.

-90.

1b 11

-90.

-90.

-90.

.9913519_

5.

10.

5.

I0.

5.

0

I

I

1

0

-94

920. 830. 750.

325. 235. IbO.

-Z65. -_60. -4_0.

665.

75.

585.

-I0.

500.

-80.

-360. -245. -540. -390. -270. -bOO.

°300. -610. -4_0. -320. -740. -540.

-800. -_75. -350. -lOuO. -o25. -380.

-675. -400. -1030. -700. -410. -1000.

-4dO. -1000. -bbO. -625. -825. -625.

-777. -bOO. -442. -730. -SHO. -448.

-575. -450. -bbU. -55_. -450. -625.

-450. -bOO. -5_. -445. -560. -500.

-545. -480. -_b. -520. -4T5. -43d.

-450. -427. -4_0. -450. -420.

-435. -420. -350.

-250. -220. -190.

-330.-355. -300.

-220. -220. -_DS. -205. -250. -155.

-225. -140. -115. -210. -125. -165.

-100. -150. -250. -75. -130. -I_.

-115. -175. O. -105. -170. O.

-100. O. -Of. -155. O. -90.

-40. -90. -140. -50. -90. -135.

-90. -130. -OO. -90. -125. -70.

-IZO. -75. -'_D. -II). -80. -90.

-80. -90. -11U. -85. -90. -105.

-90. -100. -90. -90. -90.

-90.

-90.

-90. -90. -9O.

-90. -90. -93.

-90.

.99282155 .97_27164 .9_216935

8.5

ll.b

5.5

11.5

8.0

_99

0 0 0 0 0 0 3

[NL) OF TCS[ PR,)L_KAM

-_0.

-VO •

._135198

0 0 0

-90.

-90.
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APPENDIX D

ERROR FUNCTION

The Orr analysis of the error function e used for the criterion

of convergence of the Laplacian equation is presented in reference S.

_e formula for an error at the point N for a rectangular region shown

in sketch (k) is given by

m for m _ 0
eN_ 2 i i =

r2 s 2

where r and s are defined in sketch (k)

Y

f

sh

hbyh

spacing

me sh

(k)

Equation (Dl) was used in the program reported herein as a criterion

for the convergence of the Laplacian equation with the values r and s

for each net as follows:

Net

I

II

I!I

IV

V

r s

8.5 S

ii. S I0

5.5 S

ii.5 i0

8.S S



68

REFERENCES

i. Mickelsen, William R.: Electric Propulsion for SpaceFlight. Aero-
space Eng., vol. 19, no. ii, Nov. 1960, pp. 6-ii; 36.

5. Lockwood, David L., Mickelsen, William, and H_uza, Vladimir: Analytic
Space ChargeFlow and Theoretical Electrostatic Rocket Engine Per-
formance. Paper 2400-65, Am. Rocket Soc., 1962.

3. Childs, J. Howard, and Mickelsen, William R.: Grid Electrode lon
Rockets for Low Specific Impulse Missions. Paper presented at
SecondAFOSRS_nposiumon AdvancedProp. Concepts, Boston (Mass.),
Oct. 7-9, 1959.

A. Varga, R. S.: Numerical Solution of the Two-GroupDiffusion Equation
in x-y Geometry. IRE Trans. of Professional Group on Nuclear Sci.,
vol. NS-4, no. 2, Dec. 19S7, pp. 52-62.

5. Panow,D. J.: Formelsammlungzur NumerischenBehandlung Partieller
Differentialgleichungen nach demDifferenzenverfahren. Akademie
Verlag (Berlin), 1933.

6. Forsythe, GeorgeE., and Wasow,Wolfgang R.:
Methods for Partial Differential Equations.
1960.

Finite-Difference
John Wiley & Sons, Inc.,

7. Varga, R. S.: Matrix iterative Analysis.
GeorgeE. Forsythe, ed., Stanford Univ.
Hall, Inc.)

The ComputerSci. Set.,
(To be pull. by Prentice-

8. Young, David: Iterative Methods for Solving Partial Difference Equa-
tions of Elliptical Type. Trans. Am. Math. Soc., vol. 76, 1954,
pp. 92-111.

9. Golub, GeneH., and Varga, Richard S.: ChebyshevSemi-lterative
Methods_ Successive Overrelaxation !terative Methods_ and Second
Order Richardson Iterative Methods, pt. I. NumerischeMath.,
vol. S, 1961, pp. 147-io6.

i0. Golub, GeneH., and Varga, Richard S.: ChebyshevSemi-lterative
Methods_ Successive 0verrelaxation Iterative Methods, and Second
Order Richardson Iterative Methods, pt. II. Numerische Math.,
vol. 3, 1961, pp. 137-168.

Ii. Varga, Richard S.: A Comparison of the Successive Overrelaxation

Method and Semi-lterative Method Using Chebyshev Polynomials.

Jour. Soc. !ndust. Appl. Math., vol. b, no. 2, June 1957, pp. $9-A6.



69

12. Spangenberg, Karl R. : VacuumTubes. McGraw-Hill Book Co., Inc.,
19_8.

13. Anand, Ram Prakash: A Study of Space-Charge-Limited Potential Distri-

bution in Ellipsoidal and Paraboloidal Diodes. Ph.D. Thesis, Ohio

State Univ., 1958.



70

cO

g
H

H

o o

r_ o

o _
_ m

r_

B %

H _

0 _

I

o_
© i

I

co;J4 ...........

I
I

S _

.l.h

n_

C
H

_4

{DIIII t ,.)

c,, [,_ i , _. Cl_ : ;i ,ij mii P_o.,
c,() ,_:, : ,;, 0J --, oJ -_, _t, ,.3 o :- t,q

o ,_; 4, o _ [ L,., ql -_, t,¸) _',J,_ o

o c,

o o

{£

t,_

S
,q

o i i i i i



71

_3
0

+_
L)

_d
-r4

G)

d

m

r-_

©
,-I

4_

.r-I
b_

®

0
H

I

%

-r-4



7'2

I
I
I

o

o_o_!oooooooo
o _,:,-,_: o

o_o_:_:o o o o?o_o o o
_ o

H

o_

o_

_o

b

o_

i



73

_

o _ • • . , , , • _- • • _0

Q

_ ...........
cJ

c_ ,-d o_ ° • ._ _ • • • • - • Z •

_ c,z

_J

p

._.................... _
e_e • • • • • • • • • • • • • • • • _ e(jl

_'_" • • • • • • • • • • ...... • •

X. _-,., _ %, / \ / ,% /X ., \ i., _ /, ___ i _X

/ \ / "% / \ / _, I "% / _1 \ / \/ x�

P} ,_ .-- • • . • _ .

c_ j _

o_o • • • • • • • • • • • • • • • • • opo_
u_

°_" _'_" A " ^ " _-" A " /_ " _-'-_-'-_\'-Q'_"

•_......._,_....>_.......>_,.....,_%S.__\_'_<_'?_'_A,,_'?'< _"_
/ %. 7 _' x / / \ / . / . . . xe/

¢)

.... _ " . .% =

I I i i _ J

u2 o_

)
._ o

,_ c._

r _ ;2

@

k

o

__ __ ._

_,__ _

_c _ 4JH _

_ _

_2_ .....

k _ _,

0 E 8 :_o;

_L _



74

ISO

O9

0

+_

q_
0

_a

i00

.987

J
J

v

J

/
/

.989 .991 .995

Estimated spectral radius, p(M)

.995

Figure 4. - Variation of number of iterations required for

convergence of matrix of test region with estimated spec-

tral radius (see sketch (h)).
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